Đề thi tuyển sinh lớp 10 THPT môn Toán học (không chuyên) - Năm học 2013-2014 - Trường THCS chuyên Nguyễn Trãi

Câu II ( 2,0 điểm)

1) Rút gọn biểu thức với

2) Hai người thợ quét sơn một ngôi nhà. Nếu họ cùng làm thì trong 6 ngày xong

việc. Nếu họ làm riêng thì người thợ thứ nhất hoàn thành công việc chậm hơn người thợ thứ hai là 9 ngày. Hỏi nếu làm riêng thì mỗi người thợ phải làm trong bao nhiêu ngày để xong việc.

Câu III (2,0 điểm)

 Cho phương trình

1) Chứng minh rằng phương trình luôn có hai nghiệm x1; x2 với mọi m.

2) Tìm các giá trị của m để phương trình có hai nghiệm x1; x2 thỏa mãn điều kiện:

Câu IV (3,0 điểm)

 Cho ba điểm A, B, C cố định và thẳng hàng theo thứ tự đó. Đường tròn (O; R) thay đổi đi qua B và C sao cho O không thuộc BC. Từ điểm A vẽ hai tiếp tuyến AM và AN với đường tròn (O). Gọi I là trung điểm của BC, E là giao điểm của MN và BC, H là giao điểm của đường thẳng OI và đường thẳng MN.

1) Chứng minh bốn điểm M, N, O, I cùng thuộc một đường tròn.

2) Chứng minh OI.OH = R2.

3) Chứng minh đường thẳng MN luôn đi qua một điểm cố định.

 

doc1 trang | Chia sẻ: Khải Anh | Ngày: 24/04/2023 | Lượt xem: 332 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Đề thi tuyển sinh lớp 10 THPT môn Toán học (không chuyên) - Năm học 2013-2014 - Trường THCS chuyên Nguyễn Trãi, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
SỞ GIÁO DỤC VÀ ĐÀO TẠO
HẢI DƯƠNG
ĐỀ THI CHÍNH THỨC
KÌ THI TUYỂN SINH LỚP 10 THPT CHUYÊN
NGUYỄN TRÃI NĂM HỌC 2013- 2014
Môn thi: TOÁN (không chuyên)
Thời gian làm bài: 120 phút
Ngày thi 19 tháng 6 năm 2013
Đề thi gồm : 01 trang
Câu I (2,0 điểm)
1) Giải phương trình (2x + 1)2 + (x – 3)2 = 10 
2) Xác định các hệ số m và n biết hệ phương trình có nghiệm (1; -2)
Câu II ( 2,0 điểm)
Rút gọn biểu thức với 
Hai người thợ quét sơn một ngôi nhà. Nếu họ cùng làm thì trong 6 ngày xong 
việc. Nếu họ làm riêng thì người thợ thứ nhất hoàn thành công việc chậm hơn người thợ thứ hai là 9 ngày. Hỏi nếu làm riêng thì mỗi người thợ phải làm trong bao nhiêu ngày để xong việc.
Câu III (2,0 điểm)
 Cho phương trình 
Chứng minh rằng phương trình luôn có hai nghiệm x1; x2 với mọi m.
Tìm các giá trị của m để phương trình có hai nghiệm x1; x2 thỏa mãn điều kiện:
Câu IV (3,0 điểm) 
 Cho ba điểm A, B, C cố định và thẳng hàng theo thứ tự đó. Đường tròn (O; R) thay đổi đi qua B và C sao cho O không thuộc BC. Từ điểm A vẽ hai tiếp tuyến AM và AN với đường tròn (O). Gọi I là trung điểm của BC, E là giao điểm của MN và BC, H là giao điểm của đường thẳng OI và đường thẳng MN.
1) Chứng minh bốn điểm M, N, O, I cùng thuộc một đường tròn.
2) Chứng minh OI.OH = R2. 
3) Chứng minh đường thẳng MN luôn đi qua một điểm cố định.
Câu V ( 1,0 điểm) 
Cho tam giác ABC có chu vi bằng 2. Ký hiệu a, b, c là độ dài ba cạnh của tam giác. Tìm giá trị nhỏ nhất của biểu thức .
----------------------- Hết ----------------------
Họ và tên thí sinh : ................................................ Số báo danh .....................................
Chữ ký của giám thị 1 ........................................... Chữ ký của giám thị 2 ..........................

File đính kèm:

  • docde_thi_tuyen_sinh_lop_10_thpt_mon_toan_hoc_khong_chuyen_nam.doc