Đáp án Đề thi tuyển sinh Đại học môn Toán khối A năm 2009
Chứng minh bất đẳng thức
Đặt a x y b x z = + = + , và c y z = + .
Điều kiện x( ) x y z yz + + = 3 trở thành: c2 2 2 = + − a b ab.
a b abc c + + ≤ a b c , ,
Bất đẳng thức cần chứng minh tương đương:
3 3 3 5 3; dương thoả mãn điều kiện trên.
0,25
c a b ab 2 2 2 = + − = + − ( ) 3 a b ab 2 ( ) ( 2 2 3 )
4
≥ + − + a b a b = 1 ( )2
4
a b + ⇒ a b c + ≤ 2 (1). 0,25
a b abc c 3 3 + + ≤ 3 5 3 a b a b ab abc c + + − + ≤ ( ) 3 5 3
.
⇔ ( ) 2 2
⇔ ( ) 3 5 a b c abc c + + ≤ 2 3
⇔ ( ) 3 5 a b c ab c + + ≤ 2
0,25
V
(1,0 điểm)
(1) cho ta: ( ) a b c c + ≤ 2 2 và 3 ) 3 ; 2 2
4
3 ( ab a b c ≤ + ≤ từ đây suy ra điều phải chứng minh.
Dấu bằng xảy ra khi: a b c = = ⇔ x = y z = .
0,25
1. (1,0 điểm) Viết phương trình AB.
Gọi N đối xứng với M qua I, suy ra N (11; 1 − ) và N thuộc đường thẳng CD. 0,25
VI
BỘ GIÁO DỤC VÀ ĐÀO TẠO ⎯⎯⎯⎯⎯⎯⎯⎯ ĐỀ CHÍNH THỨC ĐÁP ÁN – THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2009 Môn: TOÁN; Khối A (Đáp án - thang điểm gồm 04 trang) ĐÁP ÁN − THANG ĐIỂM Câu Đáp án Điểm 1. (1,0 điểm) Khảo sát • Tập xác định: 3\ . 2 D ⎧ ⎫= −⎨ ⎬⎩ ⎭\ • Sự biến thiên: - Chiều biến thiên: ( )2 1' 0, 2 3 y x x −= < ∀+ .D∈ Hàm số nghịch biến trên: 3; 2 ⎛ ⎞−∞ −⎜ ⎟⎝ ⎠ và 3 ; 2 ⎛ ⎞− +∞⎝ ⎠⎜ ⎟ . - Cực trị: không có. 0,25 - Giới hạn và tiệm cận: 1lim lim 2x x y y→−∞ →+∞= = ; tiệm cận ngang: 1 2 y = . 3 3 2 2 lim , lim x x y y− +⎛ ⎞ ⎛ ⎞→ − → −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ = −∞ = +∞ ; tiệm cận đứng: 3 2 x = − . 0,25 - Bảng biến thiên: Trang 1/4 0,25 • Đồ thị: 0,25 2. (1,0 điểm) Viết phương trình tiếp tuyến Tam giác OAB vuông cân tại suy ra hệ số góc tiếp tuyến bằng ,O 1± . 0,25 Gọi toạ độ tiếp điểm là 0 0( ; )x y , ta có: 2 0 1 1 (2 3)x − = ±+ ⇔ 0 2x = − hoặc 0 1.x = − 0,25 • , ; phương trình tiếp tuyến 0 1x = − 0 1y = y x= − (loại). 0,25 I (2,0 điểm) • , ; phương trình tiếp tuyến 0 2x = − 0 0y = 2y x= − − (thoả mãn). Vậy, tiếp tuyến cần tìm: 2.y x= − − x −∞ 3 2 − +∞ y' − − y 1 2 −∞ +∞ 1 2 y xO 1 2 y = 3 2 x = − 0,25 Trang 2/4 Câu Đáp án Điểm 1. (1,0 điểm) Giải phương trình Điều kiện: sin 1x ≠ và 1sin 2 x ≠ − (*). 0,25 Với điều kiện trên, phương trình đã cho tương đương: (1 2sin )cos 3(1 2sin )(1 sin )x x x− = + − x ⇔ cos 3sin sin 2 3 cos 2x x x− = + x ⇔ cos cos 2 3 6 x xπ π⎛ ⎞ ⎛+ = −⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎞⎟⎠ 0,25 ⇔ 2 2 x kπ π= + hoặc 2 . 18 3 x kπ π= − + 0,25 Kết hợp (*), ta được nghiệm: ( )2 18 3 x k kπ π= − + ∈] . 0,25 2. (1,0 điểm) Giải phương trình Đặt 3 3 2u x= − và 6 5 , 0v x v= − ≥ (*). Ta có hệ: 3 2 2 3 8 5 3 u v u v + =⎧⎨ 8+ =⎩ 0,25 ⇔ 3 2 8 2 3 15 4 32 40 0 uv u u u −⎧ =⎪⎨⎪ + − + =⎩ ⇔ 2 8 2 3 ( 2)(15 26 20) 0 uv u u u −⎧ =⎪⎨⎪ + − + =⎩ 0,25 ⇔ u và v (thoả mãn). 2= − = 4 0,25 II (2,0 điểm) Thế vào (*), ta được nghiệm: 2.x = − 0,25 Tính tích phân 2 2 5 2 0 0 cos cos .I xdx x π π = −∫ ∫ III dx 0,25 Đặt t x sin , cos ; (1,0 điểm) dt x= = dx 0, 0; , 1. 2 x t x tπ= = = = ( ) ( ) 112 2 2 25 2 2 3 51 0 0 0 0 2 1 8cos 1 sin cos 1 . 3 5 15 I xdx x xdx t dt t t t π π ⎛ ⎞= = − = − = − + =⎜ ⎟⎝ ⎠∫ ∫ ∫ 0,50 ( )2 2 222 0 0 0 1 1 1cos 1 cos 2 sin 2 . 2 2 2 4 I x dx x dx x x π π π π⎛ ⎞= = + = + =⎜ ⎟⎝ ⎠∫ ∫ Vậy 1 2 8 . 15 4 I I I π 0,25 = − = − Tính thể tích khối chóp... ( ) (SIB ABCD)⊥ và ( ) ( )SIC ABCD ;⊥ suy ra ( )SI ABCD⊥ . Kẻ IK BC⊥ ( )K BC∈ ⇒ ( )BC SIK⊥ ⇒ nSKI = 60 .D 0,50 Diện tích hình thang :ABCD 23 .ABCDS a= Tổng diện tích các tam giác ABI và bằng CDI 23 ; 2 a suy ra 23 . 2IBC aSΔ = 0,25 IV (1,0 điểm) ( )2 2 5BC AB CD AD a= − + = ⇒ 2 3 5 5 IBCS aIK BC Δ= = ⇒ n 3 15.tan . S A B 5 aSI IK SKI= = Thể tích khối chóp . :S ABCD 31 3 1. . 3 5ABCD a5SI= =V S 0,25 I C D K Trang 3/4 Câu Đáp án Điểm Chứng minh bất đẳng thức Đặt và ,a x y b x z= + = + .c y z= + Điều kiện ( ) 3x x y z yz+ + = trở thành: c 2 2 2 .a b ab= + − a b abc c+ + ≤ , ,a b c Bất đẳng thức cần chứng minh tương đương: 3 3 33 5 ; dương thoả mãn điều kiện trên. 0,25 2 2 2c a b ab= + − 2( ) 3a b ab= + − 2 23( ) ( ) 4 a b a b≥ + − + = 21 ( ) 4 a b+ ⇒ (1). 2a b c+ ≤ 0,25 3 3 33 5a b abc c+ + ≤ 3( ) 3 5a b a b ab abc c+ + − + ≤ . ⇔ ( ) 2 2 ⇔ 2 3( ) 3 5a b c abc c+ + ≤ ⇔ 2( ) 3 5a b c ab c+ + ≤ 0,25 V (1,0 điểm) (1) cho ta: ( ) và 22a b c c+ ≤ 23 2) 3 ; 4 ab a b c≤ + ≤3 ( từ đây suy ra điều phải chứng minh. Dấu bằng xảy ra khi: .a b c= = ⇔ x y z= = 0,25 1. (1,0 điểm) Viết phương trình ...AB Gọi N đối xứng với M qua suy ra ,I ( )11; 1N − và N thuộc đường thẳng .CD 0,25 VI.a (2,0 điểm) E∈Δ ⇒ ( );5 ;E x x− ( )6;3IE x x= − −JJG và ( 11;6 )NE x x= − −JJJG . E là trung điểm ⇒ CD .IE EN⊥ . 0IE EN =JJG JJJG ⇔ ( 6)( 11) (3 )(6 ) 0x x x x− − + − − = ⇔ 6x = hoặc 7.x = 0,25 • 6x = ⇒ ( )0; 3 ;IE = −JJG phương trình : 5 0AB y .− = 0,25 • 7x = ⇒ ( )1; 4 ;IE = −JJG phương trình : 4 19 0.AB x y− + = 0,25 2. (1,0 điểm) Chứng minh cắt xác định toạ độ tâm và tính bán kính ( )P ( ),S ( )S có tâm bán kính (1;2;3),I 5.R = Khoảng cách từ đến I ( ) :P ( ), ( )d I P = 2 4 3 4 3 3 ;R − − − = < suy ra đpcm. 0,25 Gọi và lần lượt là tâm và bán kính của đường tròn giao tuyến, H r H là hình chiếu vuông góc của trên I ( ) :P ( ),( ) 3,IH d I P= = 2 2 4.r R IH= − = 0,25 Toạ độ thoả mãn: ( ; ; )H x y z= 1 2 2 2 3 2 2 4 0 x t y t z t x y z = +⎧⎪ = −⎪⎨ = −⎪⎪ .− − − =⎩ 0,25 Giải hệ, ta được (3; 0; 2).H 0,25 Tính giá trị của biểu thức 236 36 ,iΔ = − = 1 1 3z i= − + và 2 1 3 .z i= − − 0,25 VII.a (1,0 điểm) 2 2 1| | ( 1) 3 10z = − + = và 2 22| | ( 1) ( 3) 10.z = − + − = 0,50 M B A I C D E N Trang 4/4 Câu Đáp án Điểm 2 2 1 2| | | | 20.A z z= + = 0,25 1. (1,0 điểm) Tìm ...m ( )C có tâm bán kính ( 2; 2),I − − 2.R = 0,25 Diện tích tam giác :IAB n1 . .sin 2 S IA IB AIB= ≤ 21 1; 2 R = lớn nhất khi và chỉ khi S .IA IB⊥ 0,25 Khi đó, khoảng cách từ đến I :Δ ( , ) 1 2 Rd I Δ = = ⇔ 2 2 2 2 3 1 1 m m m − − − + =+ 0,25 ⇔ ( ) hoặc 2 21 4 1m m− = + ⇔ 0m = 8 15 m = . 0,25 2. (1,0 điểm) Xác định toạ độ điểm ...M 2Δ qua và có vectơ chỉ phương (1;3; 1)A − (2;1; 2).u = − G 1M ∈Δ ⇒ ( 1 ; ; 9 6 ).M t t t− + − + (2 ;3 ;8 6 ),MA t t t , (8 14;20 14 ; 4)MA u t t t⎡ ⎤= − − −JJJG = − − −⎣ ⎦ JJJG G ⇒ ,MA u⎡ ⎤⎣ ⎦ JJJG G 23 29 88 68.t t= − + 0,25 Khoảng cách từ M đến 2 :Δ 22 , ( , ) 29 88 68. MA u d M t t u ⎡ ⎤⎣ ⎦Δ = = − + JJJG G G Khoảng cách từ M đến ( ) :P ( ) ( )22 2 1 2 12 18 1 11 20 ,( ) . 31 2 2 t t t t d M P − + − + − − −= = + − + 0,25 2 11 2029 88 68 3 t t t −− + = ⇔ 235 88 53 0t t− + = ⇔ 1t = hoặc 53 . 35 t = 0,25 VI.b (2,0 điểm) 1t = ⇒ (0;1; 3);M − 53 35 t = ⇒ 18 53 3; ; 35 35 35 M ⎛ ⎞⎜ ⎟⎝ ⎠. 0,25 Giải hệ phương trình VII.b Với điều kiện (*), hệ đã cho tương đương: 0xy > 2 2 2 2 2 4 x y xy x xy y ⎧ + =⎪⎨ − + =⎪⎩ 0,25 (1,0 điểm) 2 4 x y y =⎧⎨ =⎩ 2. x y y =⎧⎨ = ±⎩ ⇔ ⇔ 0,50 ( ; ) (2;2)x y = ( ; ) ( 2; 2).x y = − −Kết hợp (*), hệ có nghiệm: và 0,25 -------------Hết-------------
File đính kèm:
- DaToanACt.pdf