Đáp án Đề thi tuyển sinh Đại học, Cao đẳng môn Toán khối A năm 2002
y ' = −3x 2 + 6mx + 3(1− m 2 ) = −3(x − m) 2 + 3 , ?
? ?
= +
= −
= ⇔
1 1
0
1 2
'
x m
x m
y
Ta thấy x1 ≠ x2 và y' đổi dấu khi qua x1 và x2 ⇒ hàm số đạt cực trị tại
x1 và x2 .
y1 = y(x1) = −m 2 + 3m − 2 và y2 = y(x2 ) = −m 2 + 3m + 2
Ph−ơng trình đ−ờng thẳng đi qua 2 điểm cực trị
M 1(m −1;−m 2 + 3m − 2) và M 2 (m +1;−m 2 + 3m + 2) là:
⇔
+ − +
=
− +
4
3 2
2
x m 1 y m 2 m
y = 2x − m 2 + m
Cách II. y ' = −3x 2 + 6mx + 3(1− m 2 ) = −3(x − m) 2 + 3 , Ta thấy
∆'= 9m 2 + 9(1− m 2 ) = 9 > 0 ⇒ y'= 0 có 2 nghiệm x1 ≠ x2
và y' đổi dấu khi qua x1 và x2 ⇒ hàm số đạt cực trị tại x1 và x2 .
Ta có y = −x 3 + 3mx 2 + 3(1− m 2 )x + m3 − m 2
( ) 3 6 3 3 2 .
3 3
1 2 2 2
x mx m x m m
m
x ? − + + − + − +
? ?
???
= −
Từ đây ta có y1 = 2x1 − m 2 + m và y2 = 2x2 − m 2 + m .
Vậy ph−ơng trình đ−ờng thẳng đi qua 2 điểm cực trị là y = 2x − m 2 + m
1bộ giáo dục và đào tạo Kỳ thi tuyển sinh đại học, cao đẳng năm 2002 ------------------------------------- Đáp án và thang điểm môn toán khối A Câu ý Nội dung ĐH CĐ I 1 23 31 xxym +−=⇒= Tập xác định Rx∈∀ . )2(363' 2 −−=+−= xxxxy , = =⇔= 2 0 0' 2 1 x x y 10",066" =⇔==+−= xyxy Bảng biến thiên ∞+∞− 210x −'y +0 −0 −+ 0"y y +∞ lõm U 4 CT 2 CĐ 0 lồi ∞− = =⇔= 3 0 0 x x y , 4)1( =−y Đồ thị: ( Thí sinh có thể lập 2 bảng biến thiên) ∑1 ,0 đ 0,25 đ 0,5 đ 0,25 đ ∑1 ,5 đ 0,5đ 0,5 đ 0,5 đ -1 1 2 3 x0 2 4 y 2I 2 Cách I. Ta có 2332323 33033 kkxxkkxx +−=+−⇔=−++− . Đặt 23 3kka +−= Dựa vào đồ thị ta thấy ph−ơng trình axx =+− 23 3 có 3 nghiệm phân biệt 43040 23 <+−<⇔<<⇔ kka ( )( ) >−+ <≠⇔ >+−+ <≠⇔ 021 30 0)44)(1( 30 22 kk k kkk k ≠∧≠ <<−⇔ 20 31 kk k Cách II. Ta có [ ] 03)3()(033 222323 =−+−+−⇔=−++− kkxkxkxkkxx có 3 nghiệm phân biệt 03)3()( 22 =−+−+=⇔ kkxkxxf có 2 nghiệm phân biệt khác k ≠∧≠ <<−⇔ ≠−+−+ >++−=∆⇔ 20 31 033 0963 222 2 kk k kkkkk kk ∑ 5,0 đ 0,25 đ 0,25 đ ----------- 0,25đ 0,25 đ ∑ 5,0 đ 0,25 đ 0,25 đ ----------- 0,25 đ 0,25 đ 3 Cách I. 3)(3)1(363 222' +−−=−++−= mxmmxxy , += −=⇔= 1 1 0 2 1' mx mx y Ta thấy 21 xx ≠ và 'y đổi dấu khi qua 1x và ⇒2x hàm số đạt cực trị tại 1x và 2x . 23)( 211 −+−== mmxyy và 23)( 222 ++−== mmxyy Ph−ơng trình đ−ờng thẳng đi qua 2 điểm cực trị ( )23;1 21 −+−− mmmM và ( )23;1 22 ++−+ mmmM là: ⇔+−+=+− 4 23 2 1 2 mmymx mmxy +−= 22 Cách II. 3)(3)1(363 222' +−−=−++−= mxmmxxy , Ta thấy 0'09)1(99' 22 =⇒>=−+=∆ ymm có 2 nghiệm 21 xx ≠ và 'y đổi dấu khi qua 1x và ⇒2x hàm số đạt cực trị tại 1x và 2x . Ta có 23223 )1(33 mmxmmxxy −+−++−= ( ) .23363 33 1 222 mmxmmxxmx +−+−++− −= Từ đây ta có mmxy +−= 211 2 và mmxy +−= 222 2 . Vậy ph−ơng trình đ−ờng thẳng đi qua 2 điểm cực trị là mmxy +−= 22 . ∑1 ,0 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ ---------- 0,25 đ 0,25 đ 0,25 đ 0,25 đ ∑1 ,0 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ ----------- 0,25 đ 0,25đ 0,25 đ 0,25 đ II 1. Với 2=m ta có 051loglog 2323 =−++ xx Điều kiện 0>x . Đặt 11log23 ≥+= xt ta có 06051 22 =−+⇔=−+− tttt . 2 3 2 1 = −=⇔ t t ∑ 5,0 đ 0,25 đ ∑ 0,1 đ 0,5 đ 331 −=t (loại) , 33232 33log3log2 ±=⇔±=⇔=⇔= xxxt 33±=x thỏa mãn điều kiện 0>x . (Thí sinh có thể giải trực tiếp hoặc đặt ẩn phụ kiểu khác) 0,25 đ 0,5 đ 2. 0121loglog 23 2 3 =−−++ mxx (2) Điều kiện 0>x . Đặt 11log23 ≥+= xt ta có 0220121 22 =−−+⇔=−−+− mttmtt (3) .21log13log0]3,1[ 233 3 ≤+=≤⇔≤≤⇔∈ xtxx Vậy (2) có nghiệm ]3,1[ 3∈ khi và chỉ khi (3) có nghiệm [ ]2,1∈ . Đặt tttf += 2)( Cách 1. Hàm số )(tf là hàm tăng trên đoạn ][ 2;1 . Ta có 2)1( =f và 6)2( =f . Ph−ơng trình 22)(222 +=⇔+=+ mtfmtt có nghiệm [ ]2;1∈ .20 622 222 22)2( 22)1( ≤≤⇔ ≤+ +≤⇔ +≥ +≤⇔ m m m mf mf Cách 2. TH1. Ph−ơng trình (3) có 2 nghiệm 21 , tt thỏa mãn 21 21 <≤< tt . Do 1 2 1 2 21 <−=+ tt nên không tồn tại m . TH2. Ph−ơng trình (3) có 2 nghiệm 21 , tt thỏa mãn 21 21 ≤≤≤ tt hoặc 21 21 tt ≤≤≤ ( ) 200242 ≤≤⇔≤−−⇔ mmm . (Thí sinh có thể dùng đồ thị, đạo hàm hoặc đặt ẩn phụ kiểu khác ) ∑ 0,1 đ 0,25 đ 0,25 đ ----------- 0,25 đ 0,25 đ 0,25 đ 0,25 đ ∑ 0,1 đ 0,25 đ 0,25 đ ---------- 0,25 đ 0,25 đ 0,25 đ 0,25 đ III 1. 5 32cos 2sin21 3sin3cossin += + ++ x x xxx . Điều kiện 2 12sin −≠x Ta có 5 = + ++ x xxx 2sin21 3sin3cossin 5 + +++ x xxxxx 2sin21 3sin3cos2sinsin2sin =5 = + ++−+ x xxxxx 2sin21 3sin3cos3coscossin 5 x x xx cos5 2sin21 cos)12sin2( = + + Vậy ta có: 02cos5cos232coscos5 2 =+−⇔+= xxxx 2cos =x (loại) hoặc ).(2 32 1cos Zkkxx ∈+±=⇒= ππ ∑1 ,0 đ 0,25 đ 0,25 đ 0,25 đ ∑1 ,0 đ 0,25 đ 0,25 đ 0,25 đ 42. Vì (0∈x ; )π2 nên lấy 31 π=x và 3 5 2 π=x . Ta thấy 21 , xx thỏa mãn điều kiện 2 12sin −≠x . Vậy các nghiệm cần tìm là: 31 π=x và 3 5 2 π=x . (Thí sinh có thể sử dụng các phép biến đổi khác) Ta thấy ph−ơng trình 3|34| 2 +=+− xxx có 2 nghiệm 01 =x và .52 =x Mặt khác ∀+≤+− 3|34| 2 xxx [ ]5;0∈x . Vậy ( ) ( ) ( )dxxxxdxxxxdxxxxS ∫ ∫∫ +−+++−+−+=+−−+= 1 0 3 1 22 5 0 2 343343|34|3 ( )dxxxx∫ −+−++ 5 3 2 343 ( ) ( ) ( )dxxxdxxxdxxxS ∫∫∫ +−++−++−= 5 3 2 3 1 2 1 0 2 5635 5 3 23 3 1 23 1 0 23 2 5 3 16 2 3 3 1 2 5 3 1 +−+ +−+ +−= xxxxxxxS 6 109 3 22 3 26 6 13 =++=S (đ.v.d.t) (Nếu thí sinh vẽ hình thì không nhất thiết phải nêu bất đẳng thức ∀+≤+− 3|34| 2 xxx [ ]5;0∈x ) 0,25 đ ∑1 ,0 đ 0,25 đ 0,25 đ 0,25 đ 0,25đ 0,25 đ ∑1 ,0 đ 0,25 đ 0,25 đ 0,25 đ 0,25đ IV 1. ∑1đ ∑1đ x510-1 y 3 32 1 8 -1 5 S N I M C A K B Gọi K là trung điểm của BC và MNSKI ∩= . Từ giả thiết MNaBCMN , 22 1 ==⇒ // BC I⇒ là trung điểm của SK và MN . Ta có ⇒∆=∆ SACSAB hai trung tuyến t−ơng ứng ANAM = AMN∆⇒ cân tại A MNAI⊥⇒ . Mặt khác ( ) ( ) ( ) ( ) ( ) ( ) SKAISBCAI MNAI AMNAI MNAMNSBC AMNSBC ⊥⇒⊥⇒ ⊥ ⊂ =∩ ⊥ . Suy ra SAK∆ cân tại 2 3aAKSAA ==⇒ . 244 3 222222 aaaBKSBSK =−=−= 4 10 84 3 2 222 222 aaaSKSASISAAI =−= −=−=⇒ . Ta có 16 10. 2 1 2aAIMNS AMN ==∆ (đvdt) chú ý 1) Có thể chứng minh MNAI⊥ nh− sau: ( ) ( ) AIMNSAKMNSAKBC ⊥⇒⊥⇒⊥ . 2) Có thể làm theo ph−ơng pháp tọa độ: Chẳng hạn chọn hệ tọa độ Đêcac vuông góc Oxyz sao cho − − − haSaAaCaBK ; 6 3;0,0; 2 3;0,0;0; 2 ,0;0; 2 ),0;0;0( trong đó h là độ dài đ−ờng cao SH của hình chóp ABCS. . 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 62a) Cách I. Ph−ơng trình mặt phẳng )(P chứa đ−ờng thẳng 1∆ có dạng:( ) ( ) 042242 =+−++−+− zyxzyx βα ( 022 ≠+ βα ) ⇔ ( ) ( ) ( ) 044222 =+−−+−−+ βαβαβαβα zyx Vậy ( )βαβαβα 2;22; −+−+=Pnr .Ta có ( )2;1;12 =ur // 2∆ và ( ) 22 1;2;1 ∆∈M ( )P // ( ) ( ) ( ) ∉ =−⇔ ∉ =⇔∆ PMPM unP 22 2 2 0 1;2;1 0. βαrr Vậy ( ) 02: =− zxP Cách II Ta có thể chuyển ph−ơng trình 1∆ sang dạng tham số nh− sau: Từ ph−ơng trình 1∆ suy ra .02 =− zx Đặt = −= = ∆⇒= '4 2'3 '2 :'2 1 tz ty tx tx ( ) )4;3;2(,0;2;0 111 =∆∈−⇒ uM r // 1∆ . (Ta có thể tìm tọa độ điểm 11 ∆∈M bằng cách cho 020 =−=⇒= zyx và tính ( )4;3;2 21 21 ; 12 11 ; 22 12 1 = − −− −=ur ). Ta có ( )2;1;12 =ur // 2∆ . Từ đó ta có véc tơ pháp của mặt phẳng )(P là :[ ] ( )1;0;2, 21 −== uunP rrr . Vậy ph−ơng trình mặt phẳng )(P đi qua ( )0;2;01 −M và ⊥ ( )1;0;2 −=Pnr là: 02 =− zx . Mặt khác ( ) ( )⇒∉ PM 1;2;12 ph−ơng trình mặt phẳng cần tìm là: 02 =− zx ∑ 5,0 đ 0,25 đ 0,25 đ ----------- 0,25 đ 0,25 đ ∑ 0,1 đ 0,5 đ 0,5 đ ----------- 0,5 đ 0,5 đ 2b) b)Cách I. ( ) MHtttHH ⇒+++⇒∆∈ 21,2,12 = ( )32;1;1 −+− ttt ( ) ( ) ( ) 5)1(6111263211 22222 +−=+−=−+++−=⇒ ttttttMH đạt giá trị nhỏ nhất khi và chỉ khi ( )3;3;21 Ht ⇒= Cách II. ( )tttHH 21;2;12 +++⇒∆∈ . MH nhỏ nhất ( )4;3;210. 22 HtuMHMH ⇒=⇔=⇔∆⊥⇔ r ∑ 5,0 đ 0,25 đ 0,25 đ ----------- 0,25 đ 0,25 đ ∑ 0,1 đ 0,5 đ 0,5 đ ----------- 0,5 đ 0,5 đ V 1. Ta có ( )0;1BOxBC =I . Đặt axA = ta có );( oaA và .33 −=⇒= ayax CC Vậy ( )33; −aaC . Từ công thức ( ) ( ) ++= ++= CBAG CBAG yyyy xxxx 3 1 3 1 ta có −+ 3 )1(3; 3 12 aaG . Cách I. Ta có : |1|2|,1|3|,1| −=−=−= aBCaACaAB . Do đó ∑1đ 0,25 đ 7( )21 2 3. 2 1 −==∆ aACABS ABC . Ta có ( ) |1|3|1|3 132 2 −+− −=++= aa a BCACAB Sr = .2 13 |1| =+ −a Vậy .232|1| +=−a TH1. ++⇒+= 3 326; 3 347332 11 Ga TH2 −−−−⇒−−= 3 326; 3 134132 22 Ga . Cách II. y C I O B A x Gọi I là tâm đ−ờng tròn nội tiếp ABC∆ . Vì 22 ±=⇒= Iyr . Ph−ơng trình ( ) 321 3 11.30: 0 ±=⇒−=−= IxxxtgyBI . TH1 Nếu A và O khác phía đối với .321+=⇒ IxB Từ 2),( =ACId .3232 +=+=⇒ Ixa ++⇒ 3 326; 3 347 1G TH 2. Nếu A và O cùng phía đối với .321−=⇒ IxB T−ơng tự ta có .3212 −−=−= Ixa −−−−⇒ 3 326; 3 134 2G 0,25 đ 0,25 đ 0,25 đ ----------- 0,25 đ 0,25 đ 0,25 đ 2. Từ 13 5 nn CC = ta có 3≥n và ∑1 đ 8( ) ( ) 028356 )2)(1( !1 !5 !3!3 ! 2 =−−⇔=−−⇔−=− nnn nnn n n n n 41 −=⇒ n (loại) hoặc .72 =n Với 7=n ta có .4421402.2.3514022 222 3 3 4 2 1 3 7 =⇔=⇔=⇔= −−−−− xC xxx xx 0,25 đ 0,25 đ 0,5 đ
File đính kèm:
- DA_Toan_A_Nam2002.pdf