Tóm tắt về Phương trình bậc hai và Tam thức bậc hai
Phép giải phương trình bậc 2 với hệ số bằng số khá đơn giản. Ở đây ta chỉ
đề cập đến các phương trình chứa tham số. Một chú ý quan trọng ở đây là: Ta
thường quên mất không xét đến trường hợp hệ số a = 0.
VD1: Cho phương trình:
(m2 - 4)x2 + 2(m + 2)x +1 = 0 (1)
a) Tìm m để phương trình (1) có nghiệm.
b) Tìm m để phương trình (1) có nghiệm duy nhất.
Giải: a) Thông thường HS hay mắc sai lầm là chỉ xét đến trường hợp: D ³ 0
g trình: x + y = 2a - 1 x2 + y2 = a2 + 2a - 3 Xác định a để tích xy nhỏ nhất [ [ PHƯƠNG PHÁP TAM THỨC BẬC 2 7 3. QUAN HỆ GIỮA CÁC NGHIỆM CỦA HAI PTBH 1) Hai phương trình ax2 + bx + c = 0 và a'x2 + b'x + c = 0 có nghiệm chung Û Hệ ax2 + bx + c = 0 a'x2 + b'x + c = 0 Ta có thể giải hệ (1) bằng phương pháp thế. Tuy nhiên nếu ta giải theo phương pháp sau đây thì đơn giản hơn nhiều: Đặt x2 = y ta có: ay + bx = - c a'y + b'x = - c' Þ Hệ (1) có nghiệm Û Hệ (2) có nghiệm y = x2 ïî ï í ì = ¹ Û ïî ï í ì = ¹ Û D D D D D D D D D x y xy 2 2 2 00 VD10: Chứng minh rằng nếu 2 phương trình x2 + p1x + q1 = 0 và x2 + p2x + q2 = 0 có nghiệm chung thì: (q1 - q2)2 + (p1 - p2)(q2p1 - q1p2) = 0 HD: Sử dụng phương pháp đã trình bày ở trên. 2) Hai phương trình bậc 2 tương đương. Chú ý: HS hay bỏ sót trường hợp: Nếu 2 phương trình cùng vô nghiệm thì tương đương (trên tập nào đó) VD11: Tìm m để hai phương trình x2 -mx + 2m - 3 = 0 và x2 -(m2 + m - 4)x +1 = 0 tương đương *Trường hợp 1: D1 < 0 D2 < 0 *Trường hợp 2: Sử dụng Vi-ét 3) Hai phương trình có nghiệm xen kẽ nhau. Chú ý rằng: Mọi phương trình ax2 + bx + c = 0 (a ¹ 0) bao giờ cũng đưa được về dạng: x2 + px + q = 0 Do đó ta có bài toán: Với điều kiện nào của p, q, p', q' để 2 phương trình: (1) có nghiệm (2) PHƯƠNG PHÁP TAM THỨC BẬC 2 8 x2 + px + q = 0 và x2 + p'x + q' = 0 có nghiệm xen kẽ nhau. Ta xét 2 khả năng: * Khả năng 1: Nếu p = p' Khi đó: Nếu q = q' Þ 2 đồ thị trùng nhau (không thoả mãn) Nếu q ¹ q' Þ Đồ thị này là tịnh tiến của đồ thị kia dọc theo đường thẳng 2 P x -= nên cũng không thoả mãn. * Khả năng 2: Nếu p ¹ p' Þ 2 parabol cắt nhau tại điểm có hoành độ Þ+÷÷ ø ö çç è æ - - +÷÷ ø ö çç è æ - - =Þ - - = q pp qq p pp qq y pp qq x ' ' ' ' ' ' 2 00 Để 2 phương trình có nghiệm xen kẽ nhau thì y0 < 0 Û (q - q')2 + p(q - q')(p' - p) + q(p' - p)2 < 0 VD12: Tìm m để 2 phương trình x2 + 3x + 2m = 0 và x2 + 6x + 5m = 0 có nghiệm xen kẽ nhau. ĐS: m Î (0 ; 1) BÀI TẬP: 3.1. Cho hai phương trình: x2 - 2x + m = 0 và x2 + 2x - 3m = 0 a). Tìm m để 2 phương trình có nghiệm chung. b). Tìm m để 2 phương trình tương đương. c). Tìm m để 2 phương trình có các nghiệm xen kẽ nhau. 3.2. Tìm m để hai phương trình sau có nghiệm chung: x2 - mx + 2m + 1 = 0 và mx2 - (2m + 1)x - 1 = 0 3.3. Tìm m và n để hai phương trình tương đương: x2 - (2m + n)x - 3m = 0 và x2 - (m+3n)x - 6 = 0 3.4. Tìm m để phương trình sau có 4 nghiệm phân biệt: (x2 - mx + 1)(x2 + x +m) = 0 ˜š›™ PHƯƠNG PHÁP TAM THỨC BẬC 2 9 4. SỰ TỒN TẠI NGHIỆM CỦA PTBH 1) Sử dụng: PT ax2 + bx + c = 0 có nghiệm Û D ³ 0 VD13: Chứng minh rằng: Nếu a1.a2 ³ 2(b1 + b2) thì ít nhất 1 trong 2 phương trình x2 + a1x + b1 = 0 (1) x2 + a2x + b2 = 0 (2) có nghiệm Giải: D1 = 2222121 4;4 baba -=D- Do đó: D1 + D2 = 02)(4 212221212221 ³-+³+-+ aaaabbaa DPCMÞê ë é ³D ³D Þ 0 0 2 1 VD14: Chứng minh rằng: Trong 3 phương trình sau: x2 + 2ax+ bc = 0 x2 + 2bx + ca = 0 x2 + 2cx + ab = 0 Có ít nhất một phương trình có nghiệm Giải: Ta có: D1 + D2 + D3 = [ ] 0)()()( 2 1 222 ³-+-+- accbba Þ có ít nhất 1 biểu thức không âm Þ ĐPCM 2) Sử dụng định lý về dấu tam thức bậc hai: * Nếu af(a) < 0 Þ x1 < a < x2 * Nếu f(a)f(b) < 0 Þ x1 < a < x2 < b a < x1 < b < x2 Điều quan trọng là việc chọn a, b sao cho hợp lý. VD15: Chứng minh rằng: Phương trình: f(x) = (x - a)(x - b) + (x - b)(x - c) + (x - c)(x- a) = 0 Với a < b < c luôn có 2 nghiệm phân biệt thoả mãn: a < x1 < b < x2 < c Giải: Rõ ràng f(x) là 1 TTBH có hệ số của x2 là 3 và: f(b) = (b - c)( b - a) < 0 vì a < b < c Þ f(x) có 2 nghiệm và x1 < b < x2 f(a) = (a - b)(a - c) > 0 vì a < b < c nên a nằm ngoài [x1 ; x2] mà a < b Þ a < x1 < b < x2 [ PHƯƠNG PHÁP TAM THỨC BẬC 2 10 f(c) = (c - a)(c - b) > 0 nên c nằm ngoài [x1;x2] mà c > b nên a< x1< b <x2< c VD16: Chứng minh: Nếu | a+c | < | b | thì pt: ax2 + bx + c = 0 có nghiệm. Giải: * Nếu a = 0 Þ | c | < | b | Þ b ¹ 0 Þ phương trình trở thành: bx + c = 0 có nghiệm x = - c/b * Nếu a ¹ 0 thì | a+c | < | b | Û (a + c)2 < b2 Û (a + c - b)(a + c + b) < 0 Û f(-1)f(1) < 0 Þ f(x) = ax2 + bx + c luôn luôn có nghiệm Î (0;1) VD17: Biết: 2a + 3b + 6c = 0 Chứng minh: Phương trình ax2 + bx + c = 0 có ít nhất một nghiệm Î (0;1) Giải: * Nếu a = 0 Þ 3b + 6c = 0 Û b. 2 1 + c = 0 Þ x = 1/2 là nghiệm của phương trình ( và 1/c Î (0;1) ) * Nếu a ¹ 0 Þ 2a + 3b + 6c = f(1) + f(0) + 4f(1/2) = 0 Nhưng f(0), f(1), f(1/2) không thể đồng thời bằng 0 vì nếu như vậy thì phương trình bậc 2 có 3 nghiệm phân biệt (!). Điều đó chứng tỏ: Trong 3 biểu thức f(0), f(1), f(1/2) phải tồn tại 2 biểu thức trái dấu Þ f(x) có ít nhất 1 nghiệm Î (0;1) BÀI TẬP: 4.1. Cho a, b, c là 3 số khác nhau và khác 0. Chứng minh rằng: phương trình sau luôn có nghiệm: ab(x - a)(x - b) + bc(x - b)(x - c) + ca(x - c)(x - a) = 0 4.2. Cho m > 0 và a, b, c là 3 số thoả mãn: 0 12 =+ + + + m c m b m a Chứng minh rằng: Phương trình ax2 + bx + c = 0 có nghiệm trong (0;1) 4.3. Chứng minh rằng phương trình: ax2 + bx + c = 0 có nghiệm nếu một trong hai điều kiện sau được thoả mãn: a(a + 2b + 4c) < 0 5a + 3b + 2c = 0 4.4. Biết rằng phương trình: x2 + ax + b + c = 0 vô nghiệm. Chứng minh rằng phương trình: x2 + bx - a - c = 2 có nghiệm. 4.5. Chứng minh rằng phương trình: m xx =+ cos 1 sin 1 có nghiệm với mọi m. PHƯƠNG PHÁP TAM THỨC BẬC 2 11 5. TAM THỨC BẬC HAI VÀ BẤT ĐẲNG THỨC 1) Dạng áp dụng trực tiếp dấu TTBH: VD18: Cho D ABC chứng minh rằng: RxCosCCosBxCosA x Î"++³+ )( 2 1 2 Xét f(x) = 2 2x - x(cosB + cosC) + 1 - cosA ³ 0 " x Î R Dx = (cosB + cosC)2 - 2(1 - cosA) = 022 4 22 £ - - CB Sin A Sin Þ ĐPCM Dấu đẳng thức xẩy ra Û A = B = C hay tam giác ABC đều. Chú ý: Nếu x= 1 Þ cosA + cosB + cosC £ 2 3 là 1 bất đẳng thức quen thuộc 2) Dạng áp dụng ngược lại: Giả sử: Cần phải chứng minh dạng: D £ 0 ta chứng minh f(x) không đổi dấu khi đó ta viết D £ 0 thành dạng: b2 - 4ac để xác định f(x). VD19: Chứng minh bất đẳng thức Bunhiacopxky: ( ) nibaba iiii ,1)1(¸ 222 =³å åå Bất đẳng thức Û ( ) )2(0222 £-å åå iiii baba *Nếu a1 = a2 = . . . . . = an = 0 Þ bất đẳng thức (1) hiển nhiên đúng. Nếu 02 ¹å ia Ta xét tam thức: f(x) = ( ) ( ) ååå +- 222 2 iiii bxbaxa Ta có f(x) = ( )å £DÞÎ"³- 0'02 Rxbxa ii chính là ĐPCM. Dấu "=" Û x = i i a b = l VD20: Các số a, b, c, d, p, q thoả mãn: p2 + q2 - a2 - b2 - c2 - d2 > 0 (1) Chứng minh: (p2 - a2 - b2)(q2 - c2 - d2) £ (pq - ac - bd)2 (2) Giải: Vì (1) nên: (p2 - a2 - b2) + (q2 - c2 - d2) > 0 Þ $ 1 trong 2 số hạng khác 0 và dương. Không mất tính tổng quát, giả sử: p2 - a2 - b2 > 0 Xét tam thức: f(x) = (p2 - a2 - b2)x2 - 2 (pq - ac - bd)x + (q2 - c2 - d2) PHƯƠNG PHÁP TAM THỨC BẬC 2 12 Ta có f(x) = (px - q)2 - (ax - c)2 - (bx - d)2 Þ nếu x = p q Þ f( p q ) = -(a 22 ).(). d p q bc p q --- < 0 mà (p2 - a2 - b2) > 0 nên: af( ) p q < 0 Þ f(x) có nghiệm Þ D' ³ 0 Þ ĐPCM BÀI TẬP: 5.1. Cho a3 > 36 và abc = 1. Chứng minh rằng: cabcabcb a ++>++ 22 2 3 HD: a3 > 36 Þ a > 0 và abc = 1 Þ bc = a 1 . Đưa bất đẳng thức về dạng: (b + c)2 - a(b+c) - 0 3 3 2 >+ a a và xét tam thức bậc hai: f(x) = x2 - ax - 3 3 2a a + 5.2. Cho a, b, c là ba cạnh của một tam giác. Ba số x, y, z thoả mãn điều kiện: ax + by + cz = 0. Chứng minh: xy + yz + zx £ 0 HD: Từ ax + by + cz = 0 và do c ¹ 0 (vì c >0) nên có z = c byax+ - . Ta viết lại bất đẳng thức dưới dạng sau: xy c byax+ - (x + y) £ 0. Biến đổi bđt này về dạng: ax2 + xy(a+ b - c) + by2 ³ 0. Xét tam thức bậc hai: f(t) = at2 + y(a+ b - c)t + by2 với a >0. 5.3. Cho a >0 và n là số nguyên dương. Chứng minh rằng: 2 141 ... ++ <++++ a aaaa n dấu căn HD: Đặt aaaa ++++ ... = Un . Vì a > 0 nên Un > Un-1 . Mặt khác: Un2 = a + Un-1 suy ra: Un2 < a + Un hay Un 2 - Un + a < 0. Xét tam thức bậc hai: f(x) = x2 - x - a 5.4. Cho c > b > a > 0. Đặt d2 = a2 + b2 + c2 ; P = 4(a + b + c) ; S = 2(ab + bc + ca) PHƯƠNG PHÁP TAM THỨC BẬC 2 13 Chứng minh rằng: cSdPSdPa <-+<--< ) 2 1 4 1 ( 3 1 ) 2 1 4 1 ( 3 1 22 HD: Xét tam thức bậc hai: f(x) = x2 - ) 2 1 16 ( 9 1 6 1 2 2 Sd P Px +-+ 6. TAM THỨC BẬC HAI VÀ PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH HỆ PHƯƠNG TRÌNH, HỆ BẤT PHƯƠNG TRÌNH I. Hệ đối xứng kiểu I: Là hệ phương trình mà nếu đổi vai trò x và y cho nhau thì mỗi phương trình không thay đổi. Phương pháp giải hệ đối xứng kiểu I là: Đặt S = x + y, P = xy Þ S2 ³ 4P Giải hệ tìm S, P cuối cùng giải phương trình: X2 - SX + P = 0 tìm x, y. VD21: Giải hệ: ïî ï í ì =+ =+ 35 30 yyxx xyyx Đặt 0,0 ³=³= vyux Hệ trở thành: î í ì = = Ú î í ì = = Þ ==Þ î í ì =- = Û ïî ï í ì =+ =+ 4 9 9 4 6,5 353 30 35 30 333 22 y x y x PS PSS PS vu uvvu VD22: Biết (x,y) là nghiệm của hệ: î í ì +-=+ =+ 6222 myx myx Tìm GTNN, GTLN của biểu thức: M = xy + 2(x + y) Giải: Hệ được viết thành: î í ì -= = 32mP mS Þ x, y là nghiệm của phương trình: t2 - mt + m2 - 3 = 0 (*) Þ Để hệ có nghiệm thì phương trình (*) có nghiệm Û D ³ 0 Û | m | £ 2 Khi đó M = P + 2S = m2 + 2m - 3 Bài toán trở thành: Tìm GTLN, GTNN của M trong [-2;2] (Đây là bài toán cơ bản) M(-2) = -3, M(2) = 5, M(-1) = 4 Þ MaxM = 5, MinM = -4 PHƯƠNG PHÁP TAM THỨC BẬC 2 14 Chú ý: HS rất dễ gặp sai lầm là xét M = m2 + 2m - 3 trên R khi đó chỉ có GTNN chứ không có GTLN. VD23: Cho x, y thoả mãn x + y = 2. Tìm GTNN của F = x3 + y3 Giải: Bài toán quy về tìm tập giá trị của F Hay: Tìm F để hệ î í ì =+ =+ Fyx yx 33 2 có nghiệm. Hệ trở
File đính kèm:
- TAM THUC BAC HAI VA UNG DUNG.pdf