Toàn tập Lượng giác

Bài 20 : Cho ΔABC . Chứng minh :

cos2A + cos2B + cos 2C + 4cosAcosBcosC + 1 = 0

Ta coù : (cos2A + cos2B) + (cos2C + 1)

= 2 cos (A + B)cos(A - B) + 2cos2C

= - 2cosCcos(A - B) + 2cos2C

= - 2cosC[cos(A – B) + cos(A + B)] = - 4cosAcosBcosC

Do đó : cos2A + cos2B + cos2C + 1 + 4cosAcosBcosC = 0

pdf169 trang | Chia sẻ: tuananh27 | Lượt xem: 894 | Lượt tải: 0download
Bạn đang xem trước 20 trang mẫu tài liệu Toàn tập Lượng giác, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
x 1 nhận do điều kiện
sin x 1 loại do điều kiện
sin x sin x cosx cos x sin x cos x 0
⎡ =⎢⇔ =⎢⎢ + − − =⎢⎣
=
( )2 2
cosx 1
sin x cos x sin x cosx sin x cosx 0
=⎡⇔ ⎢ − + − =⎣
cosx 1
sin x cosx 0 hay sin x cosx sin x cosx 0
=⎡⇔ ⎢ − = + + =⎣ 
cosx 1 tgx 1
sin x cosx sin x cosx 0
= ∨ =⎡⇔ ⎢ + + =⎣ 
x k2 ,k
x k ,k
4
sin x cosx sin x cosx 0
= π ∈⎡⎢ π⎢⇔ = + π ∈⎢⎢ + + =⎣
]
] 
xét pt sin x cosx sin x cosx 0+ + = 
MATHVN.COM
www.MATHVN.com
đặt 
( )t sin x cosx 2 cosx x điều kiện t 2 và t 14π⎛ ⎞= + = − ≤ ≠ ±⎜ ⎟⎝ ⎠
2t 1 2sin x cos x⇒ = + 
Ta được phương trình 
2
2t 1t 0 t 2t
2
− 1 0+ = ⇔ + − = 
( )
( )
t 1 2 loại
t 1 2 nhận so với đk
⎡ = − −⎢⇔ ⎢ = − +⎣
Vậy 2 1cos x cos
4 2
π −⎛ ⎞− = = ϕ⎜ ⎟⎝ ⎠ 
x k2 ,k x k2 ,
4 4
π π⇔ − = ±ϕ + π ∈ ⇔ = ± ϕ + π ∈] ]k 
Bài 114 : Cho phương trình ( ) ( )m sin x cosx 1 1 sin2x *+ + = +
Tìm m để phương trình có nghiệm thuộc đoạn 0,
2
π⎡ ⎤⎢ ⎥⎣ ⎦ 
Đặt t sin x cosx 2 sin x
4
π⎛= + = −⎜⎝ ⎠
⎞⎟ , điều kiện t 2≤ 
Thì 2t 1 sin 2x= +
Vậy (*) thành : ( ) 2m t 1 t+ =
Nếu 30 x thì x
2 4 4 4
π π π π≤ ≤ ≤ + ≤
Do đó 2 sin x 1
2 4
π⎛ ⎞≤ + ≤⎜ ⎟⎝ ⎠ 
1 t 2⇔ ≤ ≤ 
ta có ( ) 2m t 1 t+ =
2tm
t 1
⇔ = + (do t = -1 không là nghiệm của phương trình) 
Xét 
2ty trên 1,
t 1
⎡ ⎤= ⎣ ⎦+ 2 
Thì ( )
2
2
t 2ty ' 0 t 1, 2
t 1
+ ⎡ ⎤= > ∀ ∈⎣ ⎦+ 
Vậy y tăng trên 1, 2⎡ ⎤⎣ ⎦ 
Vậy (*) có nghiệm trên ( ) ( )1, y 1 m y 22π⎡ ⎤ ⇔ ≤ ≤⎢ ⎥⎣ ⎦ 
( )⇔ ≤ ≤ −1 m 2 2 12 
MATHVN.COM
www.MATHVN.com
Bài 115 : Cho phương trình ( )3 3cos x sin x msin x cosx *+ = 
 a/ Giải phương trình khi m 2= 
 b/ Tìm m để (*) có nghiệm 
Ta có : (*) ( )( )cosx sinx 1 sinxcosx msinxcosx⇔ + − = 
Đặt t sin x cosx 2 cosx x
4
π⎛ ⎞= + = −⎜ ⎟⎝ ⎠ 
Với điều kiện ( )t 2≤ 
Thì 2t 1 2sin x cosx= +
Vậy (*) thành 
2 2t 1 t 1t 1 m
2 2
⎛ ⎞ ⎛− −− =⎜ ⎟ ⎜⎝ ⎠ ⎝
⎞⎟⎠
( ) ( )2 2t 3 t m t 1⇔ − = − 
a/ Khi m = 2 ta có phương trình 
( ) ( )( )2 2t 3 t 2 t 1− = − 
( )( )
3 2
2
t 2t 3t 2 0
t 2 t 2 2t 1 0
t 2 hay t 2 1 hay t 2 1( loại )
⇔ + − − =
⇔ − + + =
⇔ = = − + = − −
Vậy cosx x 1 x k2 ,k x k2 ,k
4 4 4
π π π⎛ ⎞• − = ⇔ − = π ∈ ⇔ = + π⎜ ⎟⎝ ⎠ ] ]∈ 
1 2cos x cos
4 2
x k2 ,k x k2 ,
4 4
π −⎛ ⎞• − = = α⎜ ⎟⎝ ⎠
π π⇔ − = ±α + π ∈ ⇔ = ± α + π ∈] ]k
b/ Xét phương trình ( ) ( )( )2 2t 3 t k t 1 **− = − 
Do t không là nghiệm của (**) nên 1= ±
( ) 323t t** m t 1
−⇔ = − 
Xét ( ) { }323t ty C trên 2, 2 \t 1
− ⎡ ⎤= −⎣ ⎦− 1± 
Ta có ( )
4
22
t 3y ' 0 t 1
t 1
− −= < ∀
−
= ±
)
 suy ra y giảm và (trên 1,1−
 lim , lim
x x
y y+ −→ − →= +∞ =−∞1 1
Do đó ( ) { }trên 1,1 2, 2 \ 1⎡ ⎤− ⊂ − ±⎣ ⎦ ta có 
(d) y = m cắt (C) 
3
2
3t ty với m R
t 1
−= ∀ ∈− 
Vậy (*) có nghiệm m R∀ ∈
MATHVN.COM
www.MATHVN.com
Bài 116 : Cho phương trình 
( ) ( )1 1 1m sin x cosx 1 tgx cot gx 0 *
2 sin x cosx
⎛ ⎞+ + + + + + =⎜ ⎟⎝ ⎠ 
a/ Giải phương trình khi 1m
2
= 
b/ Tìm m để (*) có nghiệm trên 0,
2
π⎛ ⎞⎜ ⎟⎝ ⎠ 
 Với điều kiện ta có sin 2x 0≠
 (*) ( ) 1 sin x cosx 1 1m sin x cosx 1 0
2 cosx sin x sin x cosx
⎛ ⎞⇔ + + + + + +⎜ ⎟⎝ ⎠ = 
( ) ( )
( )
( ) ( )
( )
( )
2
m sin 2x sin x cosx sin 2x 1 cosx sin x 0
m sin 2x sin x cosx sin 2x 1 cosx sin x 0
m sin 2x sin x cosx sin x cos x sin x cosx 0
sin x cosx 0 1
m sin 2x sin x cosx 1 0 2
⇔ + + + + +
⇔ + + + + + =
⇔ + + + + +
⎡ + =⇔ ⎢ + + + =⎢⎣
=
= 
Xét (2) đặt t sin x cosx 2 cos x
4
π⎛ ⎞= + = −⎜ ⎟⎝ ⎠ 
Thì 2t 1 sin 2x= +
Do si n 2x 0 nên t 2 và t 1≠ ≤ = ±
Vậy (*) thành : ( )2
t 0
m t 1 t 1 0
=⎡⎢ − + + =⎢⎣
( )
( )
t 0 nhận so điều kiện
m t 1 1 0 ( do t 1)
⎡ =⇔ ⎢ − + = ≠ −⎢⎣
a/ Khi 1m
2
= thì ta được : 
( )
t 0
t 1 loại do điều kiện
=⎡⎢ =−⎢⎣
Vậy sinx + cosx = 0 
tgx 1
x k ,k
4
⇔ = −
π⇔ = − + π ∈] 
b/ Ta có : 0 x x
2 4 4
π π π< < ⇔ − < − <
4
π 
Lúc đó 
 2 cos x 1 1 t 2
2 4
π⎛ ⎞< − ≤ ⇒ < ≤⎜ ⎟⎝ ⎠ 
Do (t 0 1, 2 ⎤= ∉ ⎦
MATHVN.COM
www.MATHVN.com
Nên ta xét phương trình : ( ) ( )m t 1 1 0 **− + = 
( )** mt m 1⇔ = − 
1t 1
m
⇔ = − (do m = 0 thì (**) vô nghiệm) 
Do đó : yêu cầu bài toán 11 1 2
m
⇔ < − ≤ 
1 m 00
m 1m 211 2 1 2m
m 2 1
⎧ ⎪⎪ ⎪⇔ ⇔⎨ ⎨ ≤ = −⎪ ⎪− ≤ −⎩⎪⎩
⇔ ≤− −
1− 
Bài 117 : Cho ( ) ( )= + + −32f x cos 2x 2 sinx cosx 3sin2x m+ 
a/ Giải phương trình f(x) = 0 khi m = -3 
b/ Tính theo m giá trị lớn nhất và giá trị nhỏ nhất của f(x) 
 Tìm m cho ( ) 2f x 36 x R≤ ∀ ∈⎡ ⎤⎣ ⎦
Đặt ( )t sin x cos x 2 cos x điều kiện t 24π⎛ ⎞= + = − ≤⎜ ⎟⎝ ⎠ 
Thì 2t 1 sin 2x= +
Và ( )22 2 2 4cos 2x 1 sin 2x 1 t 1 t 2t= − = − − = − + 2 
Vậy ( ) ( ) ( )4 2 3 2f x thành g t t 2t 2t 3 t 1 m= − + + − − + 
a/ Khi m = -3 thì g(t) = 0 ( )2 2t t 2t 1 0
t 0 t 1
⇔ − − + =
⇔ = ∨ =
vậy khi m = -3 thì f(x) = 0 
( )
1cos x 0 hay cos x
4 4 2
x 2k 1 hay x k2 , k
4 2 4 4
π π⎛ ⎞ ⎛ ⎞⇔ − = − =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
π π π π⇔ − = + − = ± + π ∈]
 3x k
4
π⇔ = + π hay x k2 x k2 , k
2
π= + π ∨ = π ∈] 
b/ Ta có ( ) ( )3 2 2g ' t 4t 6t 2t 2t 2t 3t 1= − + − = − − + 
Vậy 
( )g' t 0 1t 0 t 1 t
2t 2, 2
⎧ =⎪ ⇔ = ∨ = ∨ =⎨ ⎡ ⎤∈ −⎪ ⎣ ⎦⎩
Ta có : ( ) ( ) 1 47g 0 3 m g 1 , g m
2 16
⎛ ⎞= + = = +⎜ ⎟⎝ ⎠ ( ) ( )g 2 4 2 3 m, g 2 m 3 4 2= − + = − − 
MATHVN.COM
www.MATHVN.com
Vậy : ( ) ( )
t 2 , 2x
Maxf x Max g t m 3
⎡ ⎤∈ −∈ ⎣ ⎦
= =
\
+ 
( ) ( )
t 2 , 2x R
Minf x Min g t m 3 4 2
⎡ ⎤∈ −∈ ⎣ ⎦
= = − − 
Do đó : ( ) ( )2f x 36, x R 6 f x 6, x R≤ ∀ ∈ ⇔ − ≤ ≤ ∀ ∈⎡ ⎤⎣ ⎦
( )
( )
R
R
Max f x 6
Min f x 6
m 3 6
m 3 4 2 6
≤⎧⎪⇔ ⎨ ≥ −⎪⎩
+ ≤⎧⎪⇔ ⎨ − − ≥ −⎪⎩
 4 2 3 m 3⇔ − ≤ ≤ 
Cách khác : Ta có ( ) ( ) ( ) 22 2g t t t 2t 1 3 m t t 1 3 m⎡ ⎤= − − + + + = − − + +⎣ ⎦ 
Đặt 2u t t= −
Khi 1t 2, 2 thì u ,2 2
4
⎡ ⎤⎡ ⎤∈ − ∈ − + =⎢ ⎥⎣ ⎦ ⎣ ⎦ D 
Vậy ( ) ( ) 2g t h u u 3 m= = − + +
( ) ( ) ( )
( ) ( ) ( )
R u Dt 2 , 2
R t 2 , 2 u D
Max f x Max g t Max h u m 3
Min f x Min g t Min h u m 3 4 2
∈⎡ ⎤∈ −⎣ ⎦
⎡ ⎤∈ − ∈⎣ ⎦
= = = +
= = = − − 
Chú ý 1 : Phương trình giả đối xứng 
( ) ( )a sin x cosx b sin x cosx 0− + = 
đặt t = sinx – cosx 
thì t 2 sin x 2 cos x
4 4
π π⎛ ⎞ ⎛= − = −⎜ ⎟ ⎜⎝ ⎠ ⎝
⎞+ ⎟⎠ 
với điều kiện 2t 2 thì t 1 2sin x cos≤ = − x 
Bài 118 : Giải phương trình ( )2sin x cot gx 2sin2x 1 *+ = +
Điều kiện : sin x 0 cosx 1≠ ⇔ = ±
Lúc đó (*) cos x2sin x 4sin x cos x 1
sin x
⇔ + = +
) =
( )
( ) ( ) (
( )
( )
( )
⇔ + = +
⇔ − − − =
⇔ − − − +
⇔ − = − + =
− =⎡⇔ ⎢ − − =⎢⎣
2 2
2 2
2sin x cos x 4 sin x cos x sin x
2sin x sin x cos x 4 sin x 1 0
sin x 2sin x 1 cos x 2sin x 1 2sin x 1 0
2sin x 1 0 hay sin x cos x 2sin x 1 0
2sin x 1 0 1
sin x cos x sin 2x 0 2
MATHVN.COM
www.MATHVN.com
( ) ( )• ⇔ = 1Ta có 1 sin x nhận do sin x 0
2
≠ 
π π⇔ = + π ∨ = + π ∈ ]5x k2 x k2 , k
6 6
( ) π⎛ ⎞• = − = ⎜ ⎟⎝ ⎠Xét 2 Đặt t sin x cos x 2 sin x 4− 
Với điều kiện ≤ ≠t 2 và t ± 1
x
0
0
Thì 2t 1 sin2= −
Vậy (2) thành : ( )2t 1 t− − =
2t t 1⇔ + − = 
( )1 5 1 5t t
2 2
− + − −⇔ = ∨ = loại 
Do đó : ( )1 52 sin x nhận do t 2 và t 14 2π − +⎛ ⎞− = ≤ ≠ ±⎜ ⎟⎝ ⎠ 
π −⎛ ⎞⇔ − = =⎜ ⎟⎝ ⎠
5 1sin x sin
4 2 2
ϕ 
π⎡ − = ϕ + π ∈⎢⇔ ⎢ π⎢ − = π − ϕ + π ∈⎢⎣
]
]
x k2 , k
4
x k2 ,
4
k
π⎡ = ϕ + + π ∈⎢⇔ ⎢ π⎢ = − ϕ + π ∈⎢⎣
]
]
x k2 , k
4
5x k2 ,
4
k
Bài 119 : Giải phương trình 
( ) ( ) ( )cos2x 5 2 2 cos x sin x cos x *+ = − − 
Ta có : ( ) ( ) ( ) (2 2* cos x sin x 5 2 2 cos x sin x cos x⇔ − + = − − )
( ) ( ) ( )sin x cos x 2 2 cos x sin x cos x 5 0⇔ − − + + −⎡ ⎤⎣ ⎦ = 
( )[ ]sin x cos x sin x cos x 4 5 0⇔ − − + − = 
Đặt t sin x cos x 2 sin x
4
π⎛ ⎞= − = −⎜ ⎟⎝ ⎠ 
Với điều kiện t 2≤ 
(*) thành : ( )t t 4 5 0+ − =
( )
2t 4t 5 0
t 1 t 5 loại
⇔ + − =
⇔ = ∨ = − 
Vậy ( )* ⇔ 1sin x sin
4 42
π π⎛ ⎞− = =⎜ ⎟⎝ ⎠ 
MATHVN.COM
www.MATHVN.com
π π π π⇔ − = + π ∨ − = + π ∈
π⇔ = + π ∨ = π + π ∈
]
]
3x k2 x k2 , k
4 4 4 4
x k2 x k2 , k
2
Bài 120 : Giải phương trình ( )3 3cos x sin x cos2x *+ = 
Ta có (*) ( ) ( ) 2 2cos x sin x 1 sin x cos x cos x sin x⇔ + − = − 
( )
( )
⇔ + = − = −
+ =⎡⇔ ⎢ − − + =⎢⎣
cos x sin x 0 hay 1 sin x cos x cosx sin x
sin x cos x 0 1
sin x cos x sin x cos x 1 0 2
Ta có : ( )1 tgx 1⇔ = − 
π⇔ = − + π ∈ ]x k , k
4
Xét (2) đặt t sin x cos x 2 sin x
4
π⎛ ⎞= − = −⎜ ⎟⎝ ⎠ 
Với điều kiện t 2≤ 
Thì 2t 1 2sin xcos= − x
(2) thành 
2
21 tt 1 0 t 2t 1
2
− 0− + = ⇔ + + = 
t 1⇔ = − 
vậy (2) ⇔ 1sin x sin
4 42
π π⎛ ⎞ ⎛− = − = −⎜ ⎟ ⎜⎝ ⎠ ⎝
⎞⎟⎠ 
π π⎡ = π ∈− = − + π ∈ ⎡⎢ ⎢⇔ ⇔⎢ π⎢π π = + π ∈⎢ − = + π ∈ ⎣⎢⎣
]]
]]
x k2 , kx k2 , k
4 4 35 x k2 , kx k2 , k 24 4
Bài 121 : Cho phương trình ( )3 3cos x sin x m 1− = 
a/ Giải phương trình (1) khi m = 1 bằng cách đặt ẩn phụ t cosx sin x= −
b/ Tìm m sao cho (1) có đúng hai nghiệm x ,
4 4
π π⎡ ⎤∈ −⎢ ⎥⎣ ⎦ 
Ta có (1) ( ) ( )cos x sin x 1 sin xcosx m⇔ − + = 
Đặt t cos x sin x 2 cos x
4
π⎛ ⎞= − = +⎜ ⎟⎝ ⎠ 
Với điều kiện t 2≤ 
Thì 2t 1 2sin xcos= − x
Vậy (1) thành : 
21 tt 1 m
2
⎛ ⎞−+ =⎜ ⎟⎜ ⎟⎝ ⎠
( ) ( )2t 3 t 2m 2⇔ − = 
MATHVN.COM
www.MATHVN.com
a/ Khi m = 1 thì (2) thành 3t 3t 2 0− + = 
( ) ( )
( )
2t 1 t t 2 0
t 1 t 2 loại
⇔ − + − =
⇔ = ∨ = −
Vậy π π π⎛ ⎞+ = ⇔ + = ± + π ∈⎜ ⎟⎝ ⎠ ]
2cos x x k2 , k
4 2 4 4
π⇔ = π ∨ = − + π ∈ ]x k2 x k2 , k
2
b/ Nếu x ,
4 4
π π⎡ ⎤∈ −⎢ ⎥⎣ ⎦ thì 0 x
π π
4 2
+ ≤ ≤
nên 0 cos x 1
4
π⎛ ⎞≤ +⎜ ⎟⎝ ⎠ ≤ 
0 t 2 cos x 2
4
π⎛ ⎞⇔ ≤ = + ≤⎜ ⎟⎝ ⎠ 
nhận xét rằng với mỗi t tìm được trên 0, 2⎡ ⎤⎣ ⎦ 
ta tìm duy nhất một x ,
4 4
π π⎡ ⎤∈ −⎢ ⎥⎣ ⎦ 
xét ( ) 3f t t 3t trên 0, 2⎡ ⎤= − + ⎣ ⎦ 
( ) 2f ' t 3t 3⇒ = − + 
vậy (1) có đúng hai nghiệm x ,
4 4
π π⎡ ⎤∈ −⎢ ⎥⎣ ⎦ 
( ) ( ) 3d y 2m cắt C y t 3t trên 0, 2⎡ ⎤⇔ = = − + ⎣ ⎦ tại 2 điểm phân biệt 
⇔ ≤ <2 2m 2 
2 m 1
2
⇔ ≤ < 
Bài 122 : Cho phương trình 
( ) ( )2 22cos2x sin x cos x sin xcos x m sin x cos x *+ + = + 
a/ Giải phương trình khi m = 2 
b/ Tìm m để phương trình (*) có ít nhất một nghiệm trên 0,
2
π⎡ ⎤⎢ ⎥⎣ ⎦ 
Ta có : 
( ) ( ) ( ) ( )2 2* 2 cos x sin x sin x cos x sin x cos x m sin x cos x⇔ − + + = + 
MATHVN.COM
www.MATHVN.com
( )⇔ + = − + =cos x sin x 0 (1) hay 2 cos x

File đính kèm:

  • pdfToan tap Luong giac 2011.pdf
Giáo án liên quan