Thử sức trước kì thi THPT môn Toán - Đề số 01
Câu I:
Cho hàm số: y = x3 - 3mx - 3m + 1 (1)
1) Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi m = 1.
2) Tìm m để đồ thị hàm số (1) có cực đại và cực tiểu, đồng thời chúng cách đều đường thẳng
x - y = 0 .
THỬ SỨC TRƯỚC KÌ THI THTT SỐ 400-10/2010 ĐỀ SỐ 01 Thời gian làm bài 180 phút PHẦN CHUNG Câu I: Cho hàm số: 3y x 3mx 3m 1 (1) 1) Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi m = 1. 2) Tìm m để đồ thị hàm số (1) có cực đại và cực tiểu, đồng thời chúng cách đều đường thẳng x y 0 . Câu II: 1) Giải phương trình: 5 cos 2x 2cos x 3 2 tan x 2) Giải hệ phương trình: 3 3 2 2 x y 9 x 2y x 4y Câu III: Tính tích phân: 1 cos x2 0 1 sin x I ln dx 1 cos x . Câu IV: Cho tứ diện ABCD có ABC là tam giác vuông tại A. AB a,AC a 3,DA DB DC . Biết rằng DBC là tam giác vuông. Tính thể tích tứ diện ABCD. Câu V: Chứng minh rằng với mỗi số dương x, y, z thỏa mãn xy yz zx 3, ta có bất đẳng thức: 1 4 3 xyz x y y z z x 2 . PHẦN RIÊNG Thí sinh chỉ được làm một trong hai phần (phần A hoặc phần B) A. Theo chương trình chuẩn Câu VI.a: 1) Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có phương trình các cạnh AB, BC lần lượt là 5x 2y 7 0,x 2y 1 0 . Biết phương trình phân giác trong góc A là x y 1 0 . Tìm tọa độ đỉnh C của tam giác ABC. 2) Trong không gian với hệ tọa độ Descartes Oxyz cho điểm M 1;2;3 . Viết phương trình đường thẳng đi qua M, tạo với Ox một góc 600 và tạo với mặt phẳng (Oxz) một góc 300. Câu VII.a: www.MATHVN.com - 1 - www.MATHVN.com ÿw Giải phương trình: xe 1 ln 1 x . B. Theo chương trình nâng cao Câu VI.b: 1) Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): 2 2 3x y 2 và parabol (P): 2y x . Tìm trên (P) các điểm M từ đó kẻ được hai tiếp tuyến đến đường tròn (C) và hai tiếp tuyến này tạo với nhau một góc 600. 2) Trong không gian với hệ tọa độ Descartes Oxyz cho hình vuông ABCD có A 5;3; 1 , C 2;3; 4 , B là một điểm trên mặt phẳng có phương trình x y z 6 0 . Hãy tìm tọa độ điểm D. Câu VII.b: Giải phương trình: 3 31 x 1 x 2 . HƯỚNG DẪN GIẢI VÀ ĐÁP SỐ PHẦN CHUNG Câu I: 1) Tự giải 2) 2y ' 3x 3m y’ có CĐ và CT khi m 0 . Khi đó: 1 1 22 x m y 2m m 3m 1 y 2m m 3m 1x m Vì CĐ và CT đối xứng qua y = x nên: 1 2 2 1 x y m 2m m 3m 1 x y m 2m m 3m 1 Giải ra được 1m 3 Câu II: 1) ĐK: 3tan x ,cos x 0 2 PT 2 25 cos x sin x 2 3cox 2sin x 2 2 2 2 cos x 6cos x 5 sin x 4sin x cos x 3 sin x 2 cos x sin x 1 cos x sin x 5 0 cos x sin x 1 sin x 0 x k k Z cos x 0 loai www.MATHVN.com - 2 - www.MATHVN.com 2) Hệ PT 3 3 2 2 x y 9 (1) x x 2y 4y (2) Nhân 2 vế PT(2) với -3 rồi cộng với PT(1) ta được: 3 2 3 2x 3x 3x y 6y 12y 9 3 3x 1 y 2 x y 3 Thay x y 3 vào PT(2): 2 2 2 y 1 x 2 y 3 y 3 2y 4y y 3y 2 0 y 2 x 1 Nghiệm hệ: 2; 1 , 1; 2 Câu III: 1 cos x2 2 2 2 0 0 0 0 1 sin x I ln dx cos x.ln 1 sin x dx ln 1 sin x dx ln 1 cos x dx (1) 1 cos x Đặt x t dx dt 2 Suy ra: 2 2 2 0 0 0 I sin t.ln 1 cos t dt ln 1 cos t dt ln 1 sin t dt Hay 2 2 2 0 0 0 I sin x.ln 1 cos x dx ln 1 cos x dx ln 1 sin x dx (2) Cộng (1) với (2): 2 2 0 0 J K 2I cos x.ln 1 sin x dx sin x.ln 1 cos x dx Với 2 0 J cos x.ln 1 sin x dx Đặt 2 2 2 1 1 1 t 1 sin x dt cos xdx J ln tdt t ln t dt 2ln 2 1 Với 2 0 K sin x.ln 1 cos x dx Đặt 1 2 2 1 t 1 cos x dt sin xdx K ln tdt ln tdt 2ln 2 1 Suy ra: 2I 2ln 2 1 2ln 2 1 I 2ln 2 1 www.MATHVN.com - 3 - www.MATHVN.com Câu IV: ABC vuông tại A BC 2a DBC vuông cân tại D DB DC DA a 2 Gọi I là trung điểm BC BCIA ID a 2 Vì DA a 2 , nên IAD vuông tại I ID IA Mà ID BC ID (ABC) 3 ABCD ABC 1 1 1 a 3V ID.S .ID.AB.AC .a.a.a 3 3 6 6 6 Câu V: Áp dụng bất đẳng thức Cauchy cho 3 số dương 1 2xyz ; 1 2xyz và 4 x y y z z x 2 2 23 1 1 4 3 2xyz 2xyz x y y z z x x y z x y y z z x Ta có: 2 2 2x y z x y y z z x xyz xz yz xy zx yz xy Áp dụng bất đẳng thức Cauchy cho 3 số dương xy, yz và zx: 3 2 2 2xy yz zxxy.yz.zx 1 x y z 1 xyz 1 (1) 3 Áp dụng bất đẳng thức Cauchy cho 3 số dương xy + yz, yz + zx và zx + xy: 3 3 xz yz xy zx yz xy 2 xy yz zx xz yz xy zx yz xy 8 (2) 3 3 Từ (1) và (2) suy ra: 2 2 2x y z x y y z z x 8 Vậy: 3 1 4 3 3 xyz x y y z z x 28 PHẦN RIÊNG A. Theo chương trình chuẩn Câu VI.a: 1) Tọa độ điểm A: 5x 2y 7 0 x 3 A 3;4 x y 1 0 y 4 Tọa độ điểm B: 5x 2y 7 0 x 1 B 1; 1 x 2y 1 0 y 1 www.MATHVN.com - 4 - www.MATHVN.com Gọi D là giao điểm phân giác và BC. Tọa độ điểm D: x y 1 0 x 1 D 1;0 x 2y 1 0 y 0 Giã sử đường thẳng AC có vectơ pháp tuyến 1 2n n ;n 5;2 Suy ra: 1 2 1 2 2 2 1 1 2 22 2 2 2 2 2 2 2 2 2 1 2 1 2 1 2 1 2 n .1 n .1 5.1 2.1 n n 7 20n 58n n 20n 0 29n n . 1 1 5 2 . 1 1 n n 5n n 2 n 2;5 (AC) : 2x 5y 14 0 2n n 5 Tọa độ điểm C: 11x2x 5y 14 0 11 43 C ; x 2y 1 0 4 3 3y 3 2) Gọi vectơ chỉ phương của d là 1 2 3a a ;a ;a Ox có vectơ chỉ phương là 1;0;0 Đường thẳng d tạo Ox 1 góc 600 1 0 2 2 21 2 32 2 2 1 2 3 a 1cos60 3a a a 0 2a a a (Oxz) có vectơ pháp tuyến 0;1;0 Đường thẳng d tạo (Oxz) 1 góc 300 nghĩa là d tạo với vectơ pháp tuyến này 1 góc 600. 2 0 2 2 2 1 2 32 2 2 1 2 3 a 1cos60 a 3a a 0 2a a a Giải ra được: 2 2 21 2 3 1 2 3 1 1a a a a a a 2 2 Chọn 3a 2 , ta được: a 1;1; 2 , a 1;1; 2 , a 1; 1; 2 , a 1; 1; 2 Suy ra 4 phương trình đường thẳng (d): x 1 y 2 z 3 1 1 2 , x 1 y 2 z 3 1 1 2 x 1 y 2 z 3 1 1 2 , x 1 y 2 z 3 1 1 2 www.MATHVN.com - 5 - www.MATHVN.com Câu VII.a: ĐK: x 1 Đặt yy ln 1 x e 1 x . Kết hợp với phương trình đã cho ta có hệ: y x e 1 x (1) e 1 y (2) Lấy (2) trừ (1): x y x ye e y x e x e y Xét hàm số tf t e t t 1 Ta có: tf ' t e 1 0 t 1 Hàm số luôn tăng trên miền xác định. x xf x f y x y x ln 1 x e 1 x e x 1 Dễ thấy x = 0 là 1 nghiệm của phương trình. Xét hàm số tf t e t Ta có: tf ' t e 1 - Với t 0 thì f ' t 0 Hàm số luôn tăng tf t f 0 1 e t 1 t 0 PT vô nghiệm. - Với 1 t 0 thì f ' t 0 Hàm số luôn giảm tf t f 0 1 e t 1 1 t 0 PT vô nghiệm. Vậy phương trình có nghiệm x = 0. B. Theo chương trình nâng cao Câu VI.b: 1) Điểm M(x0;y0) này cách tâm của (C) một đoạn bằng 2 20 06 x y 6 2 0 0M (P) y x Suy ra: 4 2 20 0 0 0y y 6 0 y 2 y 2 Vậy M 2; 2 hoặc M 2; 2 2) AC 3 2 BA BC 3 Tọa độ điểm B là nghiệm hệ phương trình: 2 2 2 2 2 2 2 2 2 x 5 y 3 z 1 9 x 5 y 3 z 1 9 x 2 y 3 z 4 9 x z 1 0 x y z 6 0 x y z 6 0 2 2 2x 5 4 2x 2 x 9 x 2 z 1 x y 3 y 7 2x z 1 hoặc x 3 y 1 z 2 www.MATHVN.com - 6 - www.MATHVN.com B 2;3; 1 hoặc B 3;1; 2 AB DC D 5;3; 4 hoặc D 4;5; 3 Câu VII.b: 3 31 x 1 x 2 ĐK: x 1 3 3 3 3 3 2 3 2 x 2 2 x 1 x 2 x 2 x 2 x 6x 12x 8 x 2 6 x 1 0 Suy ra: x 1 là nghiệm của PT. www.MATHVN.com - 7 - www.MATHVN.com
File đính kèm:
- Thusuc01-THTT.pdf