Hướng dẫn ôn thi Tốt nghiệp THPT môn Toán năm 2009 (Ban cơ bản)

3. Tiếp tuyến có hệ số góc k :

Nếu : tiếp tuyến // đường thẳng y = a.x + b => hệ số góc k = a

 tiếp tuyến ? đường thẳng y = a.x + b => hệ số góc k = ?

 + giả sử M(x0; f(x0)) là tiép điểm => hệ số góc của tiếp tuyến f/(x0).

 + Giải phương trình f/(x0) = k => x0 = ? ?> f(x0) = ?

 + Phương trình tiếp tuyến y = k (x ? x0) + f(x0)

Chú ý : + Hai đường thẳng vuông góc nhau : k1.k2 = ?1

 + Hai đường thẳng song song nhau : k1 = k2

Bài toán 3: Biện luận số nghiệm của phương trình bằng đồ thị :

 + Giả sử phải biện luận số nghiệm của Pt : F(x; m) = 0 . Trong đó đồ thị hàm số y = f(x) .

 + Biến đổi phương trình về dạng f(x) = g(m) Đặt: M = g(m)

 + y = M là đường thẳng nằm ngang ; y =f(x) đồ thị (C)

 + Tuỳ theo M xét sự tương giao của đồ thị (C) với đồ thị y = M

Bài toán 4: xét tính đơn điệu

Phương pháp xác định khoảng tăng, giảm hàm số :

 

 

 

doc14 trang | Chia sẻ: lethuong715 | Lượt xem: 476 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Hướng dẫn ôn thi Tốt nghiệp THPT môn Toán năm 2009 (Ban cơ bản), để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
số : với a , b , c > 0 ; a , c ¹ 1 ta có :
loga.logb = b Û 
0 < a, b ¹ 1 : logb = 
Chú ý : log10x = lg x ; logx = ln x 
· Hàm số Logarit: y = logx với a > 0 ; a ¹ 1 
TXĐ : D = (0 ; +¥ )	MGT : R 
+ a > 1 ; h/s đồng biến : x1 > x2 > 0 Û logx1 > logx2 
+ 0 x2 > 0 Û logx1 <logx2 
Bài tốn 2: Tính đạo hàm của các hàm số mũ và logrit
(ex) / = ex 	-> ( eu)/ = u/.eu
( ax) / = ax.lna 	-> ( au)/ = u/.au.lna
(lnx) / = x Ỵ(0;+¥)	-> (ln½u½)/ = 
(logax) / = 	-> (logau )/ = 
Bài tốn3: giải phương trình mũ và logarit :
· Dạng cơ bản:
= Û f(x) = g(x) 
= 1 Û ( u -1 ).v(x) = 0 ( trong đó u có chứa biến )
= b ( với b > 0 ) Û f(x) = logb
hoặc
logf(x) = logg(x) Û
dạng: Û f(x) = 
 = b Û 
· Đặt ẩn phụ : 
a. +b. + g = 0 ; Đặt : t = Đk t > 0
 a.+b.+ g = 0 ; Đặt : t = Đk t > 0
a.+b.+ g = 0 và a.b = 1; Đặt: t = ;=
a.+b.+ g. = 0 ; Đặt t = 
· Logarit hoá hai vế :
Bài tốn 4: Giải bất phương trình mũ và logarit
· Dạng cơ bản :
10 > Û 
20 > b Û Nếu b £ 0 có nghiệm "x
	 Nếu b > 0 f(x) > logb nếu a > 1
	 f(x) < logb nếu 0 < a < 1 
 30 < b Û Nếu b £ 0 thì pt vô nghiệm
	 Nếu b > 0 ; f(x) 1
	 f(x) > logb nếu 0 < a < 1 
·logf(x) > logg(x) Û Đk: f(x) > 0 ; g(x) > 0 ; 0 < a ¹ 1
 (a-1)[ f(x) - g(x) ] > 0 
·logf(x) > b 	Û * Nếu a > 1 : bpt là f(x) > 
	 * Nếu 0 < a < 1 bpt là 0 < f(x) < 
·logf(x) 1 : bpt là 0 < f(x) < 	 
 * Nếu 0 
·> 1 Û u(x) > 0 và [ u(x) -1 ].v(x) > 0 
· 0 và [ u(x) -1 ].v(x) < 0 
Lưu ý: 
 *) trong trường hợp cĩ ẩn dưới cơ số thì chúng ta nên sử dụng cơng thức sau để bài tốn trở nên dễ dang hơn.
10 > ĩ (a-1)(f(x) - g(x)) > 0.
20 logf(x) > logg(x) ĩ (a-1)(f(x) - g(x)) > 0.
 *) Khi giải bài tốn bất phương trình mũ hoặc logarit thì phải nắm thật vững tính chất đơn điệu của hai hàm số trên.
 *) Nắm vững phép lấy hợp, lấy giao của hai hay nhiều tập hợp số.
Phần 3: Nguyên hàm.
Bài tốn 1: Tìm nguyên hàm cơ bản (dựa vào bảng nguyên hàm của các hàm số cơ bản).
+ C (a ¹-1 )
 = ln½x½ + C ( x¹ 0)
= ex + C
= + C 
(a ¹-1)
 = ln½ax+ b½ + C 
eax+b + C 
=
 = Sinx + C 
 = - Cos x + C 
 == tgx
 = 
 = -Cotgx
= Sin(ax+ b) + C 
= -Cos(ax+ b) + C
=tg(ax+ b) + C
= -Cotg(ax+ b) + C
Bài tốn 2: Tìm nguyên hàm bằng phương pháp đổi biến số.
Dạng 1: Tính I = bằng cách đặt t = u(x)
Đặt t = u(x)
I = 
 Dạng 2: Tính I = Nếu khơng tính được theo dạng 1 nhưng trong tích phân cĩ chứa một trong số các hàm biểu thức sau thì cĩ thể đổi biến như sau:
 thì đặt x = asint 
 thì đặt x = atant.
Bài tốn 3: Tìm nguyên hàm bằng phương pháp từng phần:
Nếu u(x) , v(x) là hai hàm số cĩ đạo hàm liên tục trên I
Hay ( với du = u’(x)dx, dv = v’(x)dx)
 phân tích các hàm sớ dễ phát hiện u và dv
 @ Dạng 1 với f(x) là đa thức:
 Đặt 
 Sau đĩ thay vào cơng thức để tính
 @ Dạng 2: 
 Đặt 
 Sau đĩ thay vào cơng thức để tính
@ Dạng 3: 
Ta thực hiện từng phần hai lần với u = eax
Bài tốn 4: Tìm nguyên hàm của các hàm số lượng giác (một số dạng cơ bản).
 Dạng 1: ;
 .
 * Thực hiện cơng thức biến đổi tích thành tổng rồi tính tích phân.
 Dạng 2: (n,m là các số nguyên dương)
 *) Nếu n lẻ, m chẵn thì đặt t = cosax.
 *) nếu m lẻ, n chẵn thì đặt t = sinax.
 *) Nếu n,m đều chẵn thì : Dùng cơng thức nhân đơi sau đĩ dung tiếp cơng thức hạ bậc để tính. (nếu một trong 2 số n hoặc n = 0 số cịn lại là số chẵn thì ta chỉ dung cơng thức hạ bậc).
 *) n,m Ỵ Z nếu n+m là số nguyên chẵn thì cĩ thể 
 đặt t = tanax hoặc t = cotax.
 Dạng 3: R là hàm số hữu tỷ. (mở rộng thi đại học).
*) Nếu R(sinx, cosx) lẻ đối với sinx tức là R(-sinx, cosx) = -R(sinx, cosx)thì ta đặt t = cosx.
*) Nếu R(sinx, cosx) lẻ đối với cosx tức là R(sinx, -cosx) = -R(sinx, cosx)thì ta đặt t = sinx.
*) Nếu R(sinx, cosx) chẵn đối với sinx và cosx tức là
 R(-sinx,- cosx) = R(sinx, cosx)thì ta đặt t = tanx.
Bài tốn 5: Tìm nguyên hàm của các hàm số hữu tỷ
 Yêu cầu tính trong đĩ f(x), g(x) là các đa thức theo x.
Trường hợp 1: Bậc của f(x)³ Bậc của g(x) thì thực hiện phép chia đa thức f(x) cho g(x) ta dẫn đến: . Trong đĩ h(x) (thương của phép chia) là một đa thức cịn r(x) (phần dư của phép chia) là một đa thức cĩ bậc nhỏ hơn bậc của g(x).
Nên .Như vậy ta tích được bằng bảng nguyên hàm vì vậy ta chỉ cịn phải tính theo trường hợp sau.
Trường hợp 2: tính với bậc r(x) nhỏ hơn bậc g(x).
 *) Phân tích mẫu số g(x) thành tích của các nhị thức.
 *) Dùng cách đồng nhất thức như sau: chắn hạn:
(*) ( x1; x2 là nghiệm của g(x). 
 *) ta quy đồng bỏ mẫu ta được biểu thức (**) rồi sau đĩ cho các giá trị của x vào biểu thức (**) để tìm các hệ số A,B,C ( thơng thường nên cho x bằng các nghiệm của g(x) để tìm các hệ số được dễ dàng).
*) sau đĩ thay vào biểu thức dưới dấu tích phân để tính.
 Lưu ý: Xét ở trình độ THPT chúng ta thường gặp phải g(x) phân tích về thành tích của các nhị thức .
Phần 4: Tích phân.
Bài tốn 1: Tính tích phân bằng cách sử dụng tính chất và nguyên hàm cơ bản.
Bài tốn 2: Tính tích phân bằng phương pháp đổi biến số.
Dạng 1: Tính I = bằng cách đặt t = u(x)
Đặt t = u(x)
Đổi cận x=a => t = u(a)
 x=b => t = u(b)
I = = 
Dạng 2: Tính I = Nếu khơng tính được theo dạng 1 nhưng trong tích phân cĩ chứa một trong số các hàm biểu thức sau thì cĩ thể đổi biến như sau:
 thì đặt x = asint 
 thì đặt x = atant.
Bài tốn 3: Tìm nguyên hàm bằng phương pháp từng phần:
Nếu u = u(x) , v = v(x) là hai hàm số cĩ đạo hàm liên tục trên [a;b] thì I = 
 phân tích các hàm sớ dễ phát hiện u và dv
 @ Dạng 1 với f(x) là đa thức:
 Đặt 
 Sau đĩ thay vào cơng thức để tính
 @ Dạng 2: 
 Đặt 
 Sau đĩ thay vào cơng thức để tính
@ Dạng 3: 
Ta thực hiện từng phần hai lần với u = eax
Bài tốn 4: Tính tích phân của các hàm số lượng giác (một số dạng cơ bản).
 Dạng 1: ;
 .
 * Thực hiện cơng thức biến đổi tích thành tổng rồi tính tích phân.
 Dạng 2: (n,m là các số nguyên dương)
 *) Nếu n lẻ, m chẵn thì đặt t = cosax.
 *) nếu m lẻ, n chẵn thì đặt t = sinax.
 *) Nếu n,m đều chẵn thì : Dùng cơng thức nhân đơi sau đĩ dung tiếp cơng thức hạ bậc để tính. (nếu một trong 2 số n hoặc n = 0 số cịn lại là số chẵn thì ta chỉ dung cơng thức hạ bậc).
 *) n,m Ỵ Z nếu n+m là số nguyên chẵn thì cĩ thể 
 đặt t = tanax hoặc t = cotax.
 Dạng 3: R là hàm số hữu tỷ. (mở rộng thi đại học).
*) Nếu R(sinx, cosx) lẻ đối với sinx tức là R(-sinx, cosx) = -R(sinx, cosx)thì 
 ta đặt t = cosx.
*) Nếu R(sinx, cosx) lẻ đối với cosx tức là R(sinx, -cosx) = -R(sinx, cosx)
 thì ta đặt t = sinx.
*) Nếu R(sinx, cosx) chẵn đối với sinx và cosx tức là
 R(-sinx,- cosx) = R(sinx, cosx)thì ta đặt t = tanx.
Bài tốn 5: Tính tích phân của các hàm số hữu tỷ
 Yêu cầu tính trong đĩ f(x), g(x) là các đa thức theo x.
Trường hợp 1: Bậc của f(x)³ Bậc của g(x) thì thực hiện phép chia đa thức f(x) cho g(x) ta dẫn đến: . Trong đĩ h(x) (thương của phép chia) là một đa thức cịn r(x) (phần dư của phép chia) là một đa thức cĩ bậc nhỏ hơn bậc của g(x).
Nên .
Như vậy ta tích được bằng bảng nguyên hàm vì vậy ta chỉ cịn phải tính theo trường hợp sau.
Trường hợp 2: tính với bậc r(x) nhỏ hơn bậc g(x).
 *) Phân tích mẫu số g(x) thành tích của các nhị thức.
 *) Dùng cách đồng nhất thức như sau: chắn hạn:
(*) ( x1; x2 là nghiệm của g(x). 
 *) ta quy đồng bỏ mẫu ta được biểu thức (**) rồi sau đĩ cho các giá trị của x vào biểu thức (**) để tìm các hệ số A,B,C ( thơng thường nên cho x bằng các nghiệm của g(x) để tìm các hệ số được dễ dàng).
*) sau đĩ thay vào biểu thức dưới dấu tích phân để tính.
 Lưu ý: Xét ở trình độ THPT chúng ta thường gặp phải g(x) phân tích về thành tích của các nhị thức .
Bài tốn 6: Tính tích phân chứa dấu giá trị tuyên đối. 
 Tính 
 +) Tìm nghiệm của f(x) = 0.
 Nếu f(x) = 0 vơ nghiệm trên (a;b) hoặc cĩ cĩ nghiệm nhưng khơng cĩ nghiệm nào thuộc [a;b] hoặc cĩ một nghiệm x = a hoặc x = b các nghiệm cịn lại khơng thuộc [a;b] thì 
 = 
 Nếu f(x) = 0 cĩ nghiệm x = c Ỵ(a;b) thì = 
*Chú ý 
 1) Nếu cĩ nhiều hơn 1 nghiệm trên (a;b) thì vẫn dung cơng thức trên tùy theo trường hợp nghiệm như thế nào. (cách làm này cĩ lợi vì ta khơngcần xét dấu f(x)).
 2) Ở mức độ thi TNTHPT khơng cần nắm bất đẳng thức tích phân.
Phần 5: Diện tích hình phẳng - thể tích vật thể trịn xoay.
Bài tốn 1: Tính diện tích hình phẳng 
a
b
x
y
· Hình phẳng giới hạn bởi :
Diện tích : S = 
Chú ý : nếu thiếu cận a, b giải pt : f(x) = 0
a
b
x
y
y=f(x)
y=g(x)
· Hình phẳng giới hạn bởi :
Diện tích : S = 
Chú ý : 1) Nếu thiếu cận a, b giải pt : f(x) = g(x) 
 2) Nếu bài tốn qua phức tạp thì ta cĩ thể vẽ hình để xác định hình phẳng hoặc tính thong qua tổng hoặc hiệu của nhiều hình.
Bài tốn 2:Tính thể tích vật thể trịn xoay : 
 * Thể tích hình tròn xoay do hình phẳng giới hạn bởi các đường :
x
b
quay quanh trục Ox và f(x) ³ 0 trên [a;b] thì V = 
* Thể tích hình tròn xoay do hình phẳng giới hạn bởi các đường :
x
b
quay quanh trục Oy và f(y) ³ 0 trên [a;b] thì V = 
Phần 6: Số phức
 Bài tốn 1: Tìm số phức, tính mơđun,
Cho hai số phức a+bi và c+di.
1) a+bi = c+di ĩ a = c; b = d. 2) mơđun số phức
3) số phức liên hiệp z = a+bi là = a - bi.
* z+ = 2a; z.= 
4) (a+bi ) +( c+di) = (a+c)+(b+d)i 
5) (a+bi ) -( c+di) = (a-c)+(b-d)i.
6) ) (a+bi )( c+di) = (ac - bd)+(ad+bc)i 
7) z = 
Bài tốn 2: Giải phương trình bậc 2.
Cho phương trình ax2 + bx + c = 0. với D = b2 - 4ac.
Nếu D = 0 thì phương trình cĩ nghiệp kép (nghiệm thực)
Nếu D > 0 thì phương trình cĩ hai nghiệm thực: 
Nếu D < 0 thì phương trình cĩ hai nghiệm phức 
B. HÌNH HỌC.
Phần 1: Thể tích, diện tích của các khối hình
Bài tốn 1: Tính diện tích xung quanh (Sxq), diện tích tồn phần(Stp) của khối nĩn,trụ,cầu.
Khối nĩn: Sxq = prl; Stp = pr(r + l).
Khối trụ: Sxq = 2prl; Stp = 2pr(r + l).
Khối cầu: S = 4pr2 .
Bài tốn 2: Tính thể tích các khối hình.
 * Khối hình chĩp V = ; * Khối nĩn V = 
 * Khối hình trụ V = pr2h ; * Khối cầu V = 
 * Khối l

File đính kèm:

  • dockien thuc co ban.doc