Tài liệu dạy thêm Hình không gian 11
BT1.Trong mặt phẳng ( a) cho tứ giác ABCD
có các cặp cạnh đối không song song và điểm S không thuộc (a)
a. Xác định giao tuyến của (SAC) và (SBD)
b. Xác định giao tuyến của (SAB) và (SCD)
c. Xác định giao tuyến của (SAD) và (SBC)
M’N’ Ì (SMN) Þ I Î ( SMN) I Î AC mà AC Ì (SAC) Þ I Î (SAC) Þ I là điểm chung của (SMN ) và (SAC) Þ ( SMN) Ç (SAC) = SI · Trong (SMN), gọi O = MN Ç SI O Î MN O Î SI mà SI Ì ( SAC) Þ O Î ( SAC) Vậy : O = MN Ç ( SAC ) b. Tìm giao điểm của cạnh SC với mặt phẳng (AMN) : · Chọn mp phụ (SAC) É SC · Tìm giao tuyến của (SAC ) và (AMN) Ta có : ( SAC) Ç (AMN) = AO · Trong (SAC), gọi E = AO Ç SC E Î SC E Î AO mà AO Ì ( AMN) Þ E Î ( AMN) Vậy : E = SC Ç ( AMN ) Dạng 3 : Chứng minh ba điểm thẳng hàng Phương pháp : · Chứng minh ba điểm đó cùng thuộc hai mp phân biệt · Khi đó ba điểm thuộc đường thẳng giao tuyến của hai mp Bài tập : 1. Cho hình bình hành ABCD . S là điểm không thuộc (ABCD) ,M và N lần lượt là trung điểm của đoạn AB và SC . a. Xác định giao điểm I = AN Ç (SBD) b. Xác định giao điểm J = MN Ç (SBD) c. Chứng minh I , J , B thẳng hàng Giải a. Xác định giao điểm I = AN Ç (SBD ) · Chọn mp phụ (SAC) É AN · Tìm giao tuyến của (SAC ) và (SBD) Þ ( SAC) Ç (SBD) = SO · Trong (SAC), gọi I = AN Ç SO I Î AN I Î SO mà SO Ì ( SBD) Þ I Î ( SBD) Vậy: I = AN Ç ( SBD) b. Xác định giao điểm J = MN Ç (SBD) · Chọn mp phụ (SMC) É MN · Tìm giao tuyến của (SMC ) và (SBD) S là điểm chung của (SMC ) và (SBD) Trong (ABCD) , gọi E = MC Ç BD Þ ( SAC) Ç (SBD) = SE · Trong (SMC), gọi J = MN Ç SE JÎ MN JÎ SE mà SE Ì ( SBD) Þ J Î ( SBD) Vậy J = MN Ç ( SBD) c. Chứng minh I , J , B thẳng hàng Ta có : B là điểm chung của (ANB) và ( SBD) · I Î SO mà SO Ì ( SBD) Þ I Î ( SBD) · I Î AN mà AN Ì (ANB) Þ I Î (ANB) Þ I là điểm chung của (ANB) và ( SBD) · J Î SE mà SE Ì ( SBD) Þ JÎ ( SBD) · J Î MN mà MN Ì (ANB) Þ J Î (ANB) Þ J là điểm chung của (ANB) và ( SBD) Vậy : B , I , J thẳng hàng 2. Cho tứ giác ABCD và S Ï (ABCD). Gọi I , J là hai điểm trên AD và SB , AD cắt BC tại O và OJ cắt SC tại M . a. Tìm giao điểm K = IJ Ç (SAC) b. Xác định giao điểm L = DJ Ç (SAC) c. Chứng minh A ,K ,L ,M thẳng hàng Giải a. Tìm giao điểm K = IJ Ç (SAC) · Chọn mp phụ (SIB) É IJ · Tìm giao tuyến của (SIB ) và (SAC) S là điểm chung của (SIB ) và (SAC) Trong (ABCD) , gọi E = AC Ç BI Þ (SIB) Ç ( SAC) = SE · Trong (SIB), gọi K = IJ Ç SE KÎ IJ KÎ SE mà SE Ì (SAC ) Þ K Î (SAC) Vậy: K = IJ Ç ( SAC) b. Xác định giao điểm L = DJ Ç (SAC) · Chọn mp phụ (SBD) É DJ · Tìm giao tuyến của (SBD ) và (SAC) S là điểm chung của (SBD ) và (SAC) Trong (ABCD) , gọi F = AC Ç BD Þ (SBD) Ç ( SAC) = SF · Trong (SBD), gọi L = DJ Ç SF LÎ DJ LÎ SF mà SF Ì (SAC ) Þ L Î (SAC) Vậy : L = DJ Ç ( SAC) c. Chứng minh A ,K ,L ,M thẳng hàng Ta có :A là điểm chung của (SAC) và ( AJO) · K Î IJ mà IJ Ì (AJO) Þ KÎ (AJO) · K Î SE mà SE Ì (SAC ) Þ K Î (SAC ) Þ K là điểm chung của (SAC) và ( AJO) · L Î DJ mà DJ Ì (AJO) Þ L Î (AJO) · L Î SF mà SF Ì (SAC ) Þ L Î (SAC ) Þ L là điểm chung của (SAC) và ( AJO) · M Î JO mà JO Ì (AJO) Þ M Î (AJO) · M Î SC mà SC Ì (SAC ) Þ M Î (SAC ) Þ M là điểm chung của (SAC) và ( AJO) Vậy : A ,K ,L ,M thẳng hàng 3. Cho tứ diện SABC.Gọi L, M, N lần lượt là các điểm trên các cạnh SA, SB và AC sao cho LM không song song với AB, LN không song song với SC. a. Tìm giao tuyến của mp (LMN) và (ABC) b. Tìm giao điểm I = BC Ç ( LMN) và J = SC Ç ( LMN) c. Chứng minh M , I , J thẳng hàng Giải a. Tìm giao tuyến của mp (LMN) và (ABC) Ta có : N là điểm chung của (LMN) và (ABC) Trong (SAB) , LM không song song với AB Gọi K = AB Ç LM K Î LM mà LM Ì (LMN ) Þ K Î (LMN ) K Î AB mà AB Ì ( ABC) Þ K Î ( ABC) b. Tìm giao điểm I = BC Ç ( LMN) · Chọn mp phụ (ABC) É BC · Tìm giao tuyến của (ABC ) và (LMN) Þ (ABC) Ç ( LMN) = NK · Trong (ABC), gọi I = NK Ç BC IÎ BC IÎ NK mà NK Ì (LMN ) Þ I Î (LMN) Vậy : I = BC Ç ( LMN) Tìm giao điểm J = SC Ç ( LMN) · Trong (SAC), LN không song song với SC gọi J = LN Ç SC JÎ SC JÎ LN mà LN Ì (LMN ) Þ J Î (LMN) Vậy : J = SC Ç ( LMN) c. Chứng minh M , I , J thẳng hàng Ta có : M , I , J là điểm chung của (LMN) và ( SBC) Vậy : M , I , J thẳng hàng 4. Cho tứ giác ABCD và S Ï (ABCD). Gọi M , N là hai điểm trên BC và SD. a. Tìm giao điểm I = BN Ç ( SAC) b. Tìm giao điểm J = MN Ç ( SAC) c. Chứng minh C , I , J thẳng hàng Giải a. Tìm giao điểm I = BN Ç ( SAC) · Chọn mp phụ (SBD) É BN · Tìm giao tuyến của (SBD ) và (SAC) Trong (ABCD), gọi O = AC Ç BD Þ (SBD) Ç ( SAC) = SO · Trong (SBD), gọi I = BN Ç SO IÎ BN IÎ SO mà SO Ì (SAC ) Þ I Î (SAC) Vậy : I = BN Ç ( SAC) b. Tìm giao điểm J = MN Ç ( SAC) : · Chọn mp phụ (SMD) É MN · Tìm giao tuyến của (SMD ) và (SAC) Trong (ABCD), gọi K = AC Ç DM Þ (SMD) Ç ( SAC) = SK · Trong (SMD), gọi J = MN Ç SK J Î MN J Î SK mà SK Ì (SAC ) Þ J Î (SAC) Vậy : J = MN Ç ( SAC) c. Chứng minh C , I , J thẳng hàng : Ta có : C , I , J là điểm chung của (BCN ) và (SAC) Vậy : C , I , J thẳng hàng Dạng 4 : Tìm thiết diện của hình chóp và mặt phẳng (a ) : Chú ý : Mặt phẳng (a ) có thể chỉ cắt một số mặt của hình chóp Cách 1 : Xác định thiết diện bằng cách kéo dài các giao tuyến Bài tập : 1. Cho hình chóp S.ABCD đáy là hình bình hành tâm O . Gọi M, N , I là ba điểm lấy trên AD , CD , SO . Tìm thiết diện của hình chóp với mặt phẳng (MNI) Giải Trong (ABCD), gọi J = BD Ç MN K = MN Ç AB H = MN Ç BC Trong (SBD), gọi Q = IJ Ç SB Trong (SAB), gọi R = KQ Ç SA Trong (SBC), gọi P = QH Ç SC Vậy : thiết diện là ngũ giác MNPQR 2. Cho hình chóp S.ABCD. Gọi M, N , P lần lượt là trung điểm lấy trên AB , AD và SC . Tìm thiết diện của hình chóp với mặt phẳng (MNP) Giải Trong (ABCD) , gọi E = MN Ç DC F = MN Ç BC Trong (SCD) , gọi Q = EP Ç SD Trong (SBC) , gọi R = FP Ç SB Vậy : thiết diện là ngũ giác MNPQR 3. Cho tứ diện ABCD . Gọi H,K lần lượt là trung điểm các cạnh AB, BC . Trên đường thẳng CD lấy điểm M sao cho KM không song song với BD . Tìm thiết diện của tứ diện với mp (HKM ). Xét 2 .trường hợp : a. M ở giữa C và D b. M ở ngoài đoạn CD Giải a. M ở giữa C và D : Ta có : HK , KM là đoạn giao tuyến của (HKM) với (ABC) và (BCD) Trong (BCD), gọi L = KM Ç BD Trong (ABD), gọi N = AD Ç HL Vậy : thiết diện là tứ giác HKMN b. M ở ngoài đoạn CD: Trong (BCD), gọi L = KM Ç BD Vậy : thiết diện là tam giác HKL 4. Cho hình chóp S.ABCD. Gọi M, N lần lượt là trung điểm lấy trên AD và DC .Tìm thiết diện của hình chóp với mặt phẳng (MNE) Giải Trong (SCD), gọi Q = EN Ç SC Trong (SAD), gọi P = EM Ç SA Trong (ABCD), gọi F = MN Ç BC Trong (SBC), gọi R = FQ Ç SB Vậy : thiết diện là ngũ giác MNQRP Cách 2 :Xác định thiết diện bằng cách vẽ giao tuyến phụ : Bài tập : 5. Cho hình chóp S.ABCD .Gọi M, N lần lượt là trung điểm SB và SC . Giả sử AD và BC không song song . a. Xác định giao tuyến của (SAD) và ( SBC) b. Xác định thiết diện của mặt phẳng (AMN) với hình chóp S.ABCD Giải a. Xác định giao tuyến của (SAD) và ( SBC) : Trong (ABCD) , gọi I = AD Ç BC Vậy : SI = (SAD) Ç ( SBC) b. Xác định thiết diện của mặt phẳng (AMN) với hình chóp S.ABCD Trong (SBC) , gọi J = MN Ç SI Trong (SAD) , gọi K = SD Ç AJ Vậy : thiết diện là tứ giác AMNK 6. Cho hình chóp S.ABCD.Trong tam giác SBC lấy một điểm M trong tam giác SCD lấy một điểm N. a. Tìm giao điểm của đường thẳng MN với mặt phẳng(SAC) b. Tìm giao điểm của cạnh SC với mặt phẳng (AMN) c. Tìm thiết diện của mặt phẳng (AMN) với hình chóp S.ABCD Giải a. Tìm giao điểm của đường thẳng MN với mặt phẳng(SAC): · Chọn mp phụ (SMN) É MN · Tìm giao tuyến của (SAC ) và (SMN) Ta có : S là điểm chung của (SAC ) và (SMN) Trong (SBC), gọi M’ = SM Ç BC Trong (SCD), gọi N’ = SN Ç CD Trong (ABCD), gọi I = M’N’ Ç AC I Î M’N’ mà M’N’ Ì (SMN) Þ I Î ( SMN) I Î AC mà AC Ì (SAC) Þ I Î (SAC) Þ I là điểm chung của (SMN ) và (SAC) Þ ( SMN) Ç (SAC) = SI · Trong (SMN), gọi O = MN Ç SI O Î MN O Î SI mà SI Ì ( SAC) Þ O Î ( SAC) Vậy : O = MN Ç ( SAC ) b. Tìm giao điểm của cạnh SC với mặt phẳng (AMN) : · Chọn mp phụ (SAC) É SC · Tìm giao tuyến của (SAC ) và (AMN) Ta có : ( SAC) Ç (AMN) = AO · Trong (SAC), gọi E = AO Ç SC E Î SC E Î AO mà AO Ì ( AMN) Þ E Î ( AMN) Vậy : E = SC Ç ( AMN ) c. Tìm thiết diện của mặt phẳng (AMN) với hình chóp S.ABCD: Trong (SBC), gọi P = EM Ç SB Trong (SCD), gọi Q = EN Ç SD Vậy : thiết diện là tứ giác APEQ 7. Cho hình chóp S.ABCD. Gọi A’, B’ , C’ là ba điểm lấy trên các cạnh SA, SB, SC . Tìm thiết diện của hình chóp khi cắt bởi mặt phẳng (A’B’C’) Giải Trong (ABCD), gọi O = AC Ç BD Trong (SAC), gọi O’ = A’C’ Ç SO Trong (SBD), gọi D’ = B’O’ Ç SD Có hai trường hợp : · Nếu D’ thuộc cạnh SD thì thiết diện là tứ giác A’B’C’D’ · Nếu D’ thuộc không cạnh SD thì Gọi E = CD Ç C’D’ F = AD Ç A’D’ Þ thiết diện là tứ giác A’B’C’EF §1 .HAI ĐƯỜNG THẲNG SONG SONG Dạng 5 : Chứng minh hai đường thẳng a và b song song : Sử dụng một trong các cách sau : · Chứng minh a và b đồng phẳng và không có điểm chung · Chứng minh a và b phân biệt và cùng song song với đường thẳng thứ ba · Chứng minh a và b đồng phẳng và áp dụng các tính chất của hình học phẳng (cạnh đối của hình bình hành , định lý talet ) · Sử dụng các định lý · Chứng minh bằng phản chứng Bài tập : 1. Cho hình chóp S.ABCD với đáy ABCD là hình bình hành .Gọi A’ ,B’ , C’ ,D’ lần lượt là trung điểm các cạnh SA , SB , SC , SD . a. Chứng minh A’B’C’D’ là hình bình hành b. Gọi M là điểm bất kì trên BC . Tìm thiết diện của (A’B’M) với hình chóp S.ABCD Giải a. Chứng minh A’B’C’D’ là hình bình hành : Trong tam giác SAB, ta có : A’B’AB Trong tam giác SCD, ta có : C’D’CD Mặt khác AB CD Þ A’B’ C’D’ Vậy : A’B’C’D’ là hình bình hành b. Tìm thiết diện của (A’B’M) với hình chóp S.ABCD: Ta có : AB ∕ ∕ A’B’ và M là điểm chung của (A’B’M) và (ABCD) Do đó giao tuyến của (A’B’M) và (ABCD) là Mx song song AB và A’B’ Gọi N = Mx Ç AD Vậy : thiế
File đính kèm:
- Tai lieu day them Hinh 11CB.doc