Luyện thi Đại học Chuyên đề Khảo sát hàm số năm học 2010-2011
Dạng 11: Cho hàm số y = f(x) có ñồ thị (C) Viết phương
trình tiếp tuyến (d) của (C)
a/ song song với ñường thẳng y = ax + b.
b/ vuông góc với ñường thẳng y = ax + b.
Phương pháp:
a/ Tính: y’ = f’(x)
Vì tiếp tuyến (d) song song với ñường thẳng y = ax + b
nên (d) có hệ số góc bằng a.
Ta có: f’(x) = a (Nghiệm của phương trình này chính là
hoành ñộ tiếp ñiểm)
Tính y0 tương ứng với mỗi x0 tìm ñược.
Suy ra tiếp tuyến cần tìm (d):
y – y0 = a. ( x – x0 )
là ñthẳng x = m thì ycbt 2121 0 xxmxx <<∨<<⇔ 3)Nếu (D) là ñthẳng 0=++ cbyax thì: ycbt ( )( ) 02211 >++++⇔ cbyaxcbyax @ Nếu (D) là ñường tròn thì cũng giống trường hợp 3) Dạng 22: ðịnh ñkiện ñể ñồ thị hàm số (C) cắt ñthẳng (D) tạI 2 ñiểm phân biệt thoả 1 trong nhưng ñkiện sau: 1)Thuộc cùng 1 nhánh ⇔ (I) có nghiệm phân biệt nằm cùng 1 phía ñốI vớI x = m ( (I) là PTHðGð của (C) và (D) ; x = m là t/cận ñứng của (C) ) 2) Cùng 1 phía Oy )(I⇔ có 2 nghiệm phân biệt cùng dấu 3)Khác phía Oy )(I⇔ có 2 nghiệm phân biệt trái dấu Dạng 23: Tìm ñiểm trên ñồ thị hàm số (C) sao cho: Tổng các khoảng cách từ ñó ñến 2 t/cận là Min Phương pháp: +Xét ( )000 , yxM thuộc (C) ( )0,0 , yx⇔ thoã y = thương +dư /mẫu +Dùng BðT Côsi 2 số ⇒ kquả Dạng 24:Tìm ñiểm trên ñồ thị hàm số (C) sao cho:khoảng cách từ ñó ñến 2 trục toạ ñộ là Min Phương pháp: +Xét ( )000 , yxM thuộc (C) www.VNMATH.com Chuyªn ®Ò luyÖn thi ®¹i häc-phÇn i: kh¶o s¸t hµm sè Năm học: 2000- 2011 Cách học tốt môn Toán là phải làm nhiều , bên cạnh ñó ,d ( hehe...a ) Trang5/10-LTðH-2010 Baøi taäp +ðặt P = ( ) ( ) 0000 ,, yxPOyMdOxMd +=⇒+ +Nháp :Cho ;0 00 Ayx =⇒= Bxy =⇒= 00 0 GọI L = min ),( BA +Ta xét 2 trường hợp : TH1: LPLx >⇒>0 TH2: Lx ≤0 .Bằng ppháp ñạo hàm suy ra ñc kquả Dạng 25:Tìm ñkiện cần và ñủ ñể 3 ñiểm M,N,P cung thuộc ñthị (C) thẳng hàng? Phương pháp M ,N,P thẳng hàng ⇔ vetơ MN cùng phương vớI vectơ MP a b xxx PNM − =++⇔ Dạng 26: Tìm trên ñồ thị (C) :y = f(x) tất cả các ñiểm cách ñều 2 trục toạ ñộ Phương pháp: +Tập hợp những ñiểm cách ñều 2 trục toạ ñộ trong (Oxy) là ñường thẳng y = x và y = -x .Do ñó : +Toạ ñộ của ñiểm thuộc (C) :y = f(x) ñồng thờI cách ñều 2 trục toạ ñộ là nghiệm của : −= = = = xy xfy xy xfy )( )( ⇒ kquả Dạng 27:Lập pt ñ/t ñi qua 2 ñiểm cực trị của hàm số hữu tỉ : '' 2 bxa cbxaxy + ++ = ( )mC Phương pháp : ðặt ( ) ( )x x V U y = + có ( ) ( ) ( )2)( )( ' )()( ' )( ' x xxxx V UVVU y − = +GọI A ( )11 , yx là ñiểm cực trị của ( )mC ' 1 ' 1 1 1 1 ' 11 ' 10' x x x x xxxx V U V UUVVUy =⇔=⇔=⇒ = 1y (1) + GọI B ( )22 , yx là ñiểm cực trị của ( )mC ' 2 ' 2 2...................................... x x V U y =⇔⇔⇒ (2) Từ (1), (2) suy ra pt ñ/t ñi qua 2 ñiểm cực trị là ' ' x x V U y = Dạng 28:Lập pt ñ/t ñi qua 2 ñiểm cực trị của hsố bậc 3 ( )mC , khi ko tìm ñc 2 ñiểm cực trị Phương pháp: +Chia '' y dcxbax y y + ++= (cx+d :là phần dư của phép chia) ( ) dcxybaxy +++=⇒ ' +Goi A( ( ) ( )2211 ,,, yxByx là 2 ñiểm cực trị của hàm số ( )mC 0'' 21 ==⇒ xx yy +Do A ( )mC∈ nên ( ) dcxybaxy +++= 1111 ' dcxy +=⇒ 11 (1) +Do B ( )mC∈ nên ( ) dcxybaxy +++= 2222 ' dcxy +=⇒ 22 (2) Từ (1),(2) suy ra pt ñ/t ñi qua 2 ñiểm cực trị : dcxy += Dạng 29:ðịnh ñkiện ñể ñồ thị hàm số bậc 3 có ñiểm Cð và CT ñốI xứng nhau qua 1 ñ/t y = mx + n ( )0≠m Phương pháp: +ðịnh ñkiện ñể hàm số có Cð, CT (1) +Lập pt ñ/t (D) ñi qua 2 ñiểm cực trị +Gọi I là trung ñiểm ñoạn nốI 2 ñiểm cực trị +ycbt kq nmxyI Dnmxy dk ⇒ +=∈ ⊥+=⇔ )( )1( www.VNMATH.com Chuyªn ®Ò luyÖn thi ®¹i häc-phÇn i: kh¶o s¸t hµm sè Năm học: 2000- 2011 Cách học tốt môn Toán là phải làm nhiều , bên cạnh ñó ,d ( hehe...a ) Trang6/10-LTðH-2010 Baøi taäp Dạng 30:Tìm 2 ñiểm thuộc ñthị (C) y = f(x) ñốI xứng nhau qua ñiểm ( )00 , yxI Phương pháp: +Giả sử ( ) ( ) ( )1111 :, xfyCyxM =∈ (1) +GọI N ( )22 , yx ñốI xứng M qua I suy ra toạ ñộ ñiểm N theo 11 , yx +Do N thuộc (C): ( )22 xfy = (2) (1),(2) :giảI hệ , Tìm 2211 ,, yxyx ⇒ Dạng 31:Vẽ ñồ thị hàm số )( xfy = (C) Phương pháp: + Vẽ ñồ thị ( )xfy = (C ') +Có )( xfy = = ( )( ) <− ≥ )(0, )(0, 2 1 Cxxf Cxxf ⇒ ðồ thị (C) gồm ñồ thị ( )1C và ñồ thị ( )2C VớI : ( ) ( )'1 CC ≡ lấy phần x 0≥ ( )2C là phần ñốI xứng của ( )1C qua Oy Dạng 32 :Vẽ ñồ thị hàm số ( )xfy = (C) Phương pháp: + Vẽ ñồ thị ( )xfy = (C ') +Có ( )xfy = = ( ) ( )( ) ( ) <− ≥ )(0, )(0, 2 1 Cxfxf Cxfxf ⇒ðồ thị (C) gồm ñồ thị ( )1C và ñồ thị ( )2C VớI ( ) ( )'1 CC ≡ lấy phần dương của (C') (nằm trên Ox) ( )2C là phần ñốI xứng của phần âm (nằm dướI Ox ) của (C') qua Ox @:Chú ý :ðồ thi ( )xfy = sẽ nằm trên Ox Dạng 33 :Vẽ ñồ thị hàm số ( )xfy = (C) Phương pháp: + Vẽ ñồ thị ( )xfy = (C ') +Vẽ ñồ thị hàm số )( xfy = (C1) CHUYÊN ðỀ :CÁC BÀI TẬP LIÊN QUAN ðẾN KHẢO SÁT HÀM SỐ LTðH Caâu 1.Tìm m ñể ñường thẳng y=x+4 cắt ñồ thị hàm số 3 22 ( 3) 4y x mx m x= + + + + tại 3 ñiểm phân biệt A, B,C sao cho tam giác MBC có diện tích bằng 4. (ðiểm B, C có hoành ñộ khác 0, M(1;3) Caâu 2. Tìm m ñể hàm số 3 2 (2 1) 2y x mx m x m= − + + − − cắt Ox tại 3 ñiểm phân biệt có hoành ñộ dương Caâu 3. Tìm hai ñiểm A, B thuộc ñồ thị hàm số 3 23 1y x x= − + sao cho tiếp tuyến tại A, B song song với nhau và 4 2AB = Caâu 4 Cho : 1 x mhs y x + = − Tìm m ñể tiếp tuyến của ñồ thị tại giao ñiểm I của hai tiệm cận cắt trục Ox , Oy tại A, B và diện tích tam giác IAB bằng 1 Caâu 5.Cho hàm số 1 12 − + = x xy viết phương trình tiếp tuyến cuả HS biết tiếp tuyến tạo với 2 trục tọa ñộ tam giác có diện tích bằng 8 Caâu 6. Cho hàm số y = 1 2 −x x (H) .Tìm các giá trị của m ñể ñường thẳng (d): y = mx – m + 2 cắt ñồ thị ( H ) tại hai ñiểm phân biệt A,B và ñoạn AB có ñộ dài nhỏ nhất. Caâu 7. Cho hàm số 1( ) 1 xy H x − = + . Tìm ñiểm M thuộc (H) ñể tổng khoảng cách từ M ñến 2 trục toạ ñộ là nhỏ nhất. Caâu 8. Cho hàm số 3 1( ) 1 xy H x + = − và ñường thẳng ( 1) 2y m x m= + + − (d) Tìm m ñể ñường thẳng (d) cắt (H) tại A, B sao cho tam giác OAB có diện tích bằng 3 2 Caâu 9. Cho hàm số 3 23 3(1 ) 1 3y x x m x m= − + − + + (Cm). Tìm m ñể hàm số có cực ñại cực tiểu ñồng thời các ñiểm cực trị cùng với gốc toạ ñộ tạo thành tam giác có diện tích bằng 4 www.VNMATH.com Chuyªn ®Ò luyÖn thi ®¹i häc-phÇn i: kh¶o s¸t hµm sè Năm học: 2000- 2011 Cách học tốt môn Toán là phải làm nhiều , bên cạnh ñó ,d ( hehe...a ) Trang7/10-LTðH-2010 Baøi taäp Caâu 10. Cho hàm số 2 1 1 xy x + = + Tìm m ñể ñường thẳng y=-2x+m cắt ñồ thị tại hai ñiểm phân biệt A, B sao cho tam giác OAB có diện tích bằng 3 • Khảo sát sự biến thiên và vẽ ñồ thị hàm số (1) • Viết phương trình ñường thẳng ñi qua M(1;3) cắt ñồ thị hàm số (1) tại hai ñiểm phân biệt A, B sao cho 32=AB . Caâu 11. Cho hàm số y = 3 22 (1 )y x x m x m= − + − + (1), m là tham số thực. 1. Khảo sát sự biến thiên và vẽ ñồ thị của hàm số khi m = 1. 2. Tìm m ñể ñồ thị của hàm số (1) cắt trục hoành tại 3 ñiểm phân biệt có hoành ñộ 1 2 3; ;x x x thoả mãn ñiều kiện 2 2 2 1 2 3 4x x x+ + < Caâu 12. Cho hàm số 2 2 2 xy x + = − (H) 1) Khảo sát và vẽ ñồ thị hàm số (H). 2) Tìm m ñể ñường thẳng (d): y=x+m cắt ñồ thị hàm số (H) tại hai ñiểm phân biệt A, B sao cho 2 2 37 2 OA OB+ = Caâu 13. Cho hàm số 4 22y x x= − (C) 1) Khảo sát và vẽ ñồ thị hàm số 2) Lấy trên ñồ thị hai ñiểm A, B có hoành ñộ lần lươt là a, b.Tìm ñiều kiện a và b ñể tiếp tuyến tại A và B song song với nhau Caâu 14. Cho hàm số 2 ( )m xy H x m − = + và A(0;1) 1) Khảo sát và vẽ ñồ thị hàm số khi m=1 2) Gọi I là giao ñiểm của 2 ñường tiệm cận . Tìm m ñể trên ñồ thị tồn tại ñiểm B sao cho tam giác IAB vuông cân tại A. Caâu 15. Cho hàm số 4 22 1y x mx m= + − − (1) , với m là tham số thực. 1)Khảo sát sự biến thiên và vẽ ñồ thị hàm số (1) khi 1m = − . 2)Xác ñịnh m ñể hàm số (1) có ba ñiểm cực trị, ñồng thời các ñiểm cực trị của ñồ thị tạo thành một tam giác có diện tích bằng 4 2 . Caâu 16 . Cho hàm số 4 22 1y x mx m= − + − (1) , với m là tham số thực. 1)Khảo sát sự biến thiên và vẽ ñồ thị hàm số (1) khi 1m = . 2)Xác ñịnh m ñể hàm số (1) có ba ñiểm cực trị, ñồng thời các ñiểm cực trị của ñồ thị tạo thành một tam giác có bán kính ñường tròn ngoại tiếp bằng 1. Caâu 17. Cho hàm số 4 2 22y x mx m m= + + + (1) , với m là tham số thực. 1)Khảo sát sự biến thiên và vẽ ñồ thị hàm số (1) khi 2m = − . 2) Xác ñịnh m ñể hàm số (1) có ba ñiểm cực trị, ñồng thời các ñiểm cực trị của ñồ thị tạo thành một tam giác có góc bằng 120 . Caâu 18 . Cho hàm số 4 22y x mx= − (1), với m là tham số thực. 1)Khảo sát sự biến thiên và vẽ ñồ thị của hàm số (1) khi 1m = − . 2)Tìm m ñể ñồ thị hàm số (1) có hai ñiểm cực tiểu và hình phẳng giới hạn bởi ñồ thị hàm số và ñường thẳng ñi qua hai ñiểm cực tiểu ấy có diện tích bằng 1. Caâu 19. Cho hàm số ( ) ( )4 2 22 2 5 5y f x x m x m m= = + − + − + 1/ Khảo sát sự biến thiên và vẽ ñồ thị (C ) hàm số với m = 1 2/ Tìm các giá trị của m ñể ®å thÞ hµm sè có các ñiểm cực ñại, cực tiểu tạo thành một tam giác vuông cân. Caâu 20. Cho hàm số 3 21 2 3 3 y x x x= − + (1) 1).Khảo sát sự biến thiên và vẽ ñồ thị của hàm số (1) . 2)Gọi ,A B lần lượt là các ñiểm cực ñại, cực tiểu của ñồ thị hàm số (1). Tìm ñiểm M thuộc trục hoành sao cho tam giác MAB có diện tích bằng 2. Caâu 21. Cho hàm số 3 26 9 4y x x x= − + − (1) 1)Khảo sát sự biến thiên và vẽ ñồ thị của hàm số (1) 2)Xác ñịnh k sao cho tồn tại hai tiếp tuyến của ñồ thị hàm số (1) có cùng hệ số góc k . Gọi hai tiếp ñiểm là 1 2,M M . Viết phương trình ñường thẳng qua 1M và 2M theo k . Caâu 22. Cho hàm số 3 23 4y x x= − + − (1) 1.Khảo sát sự biến thiên và vẽ ñồ thị (C) của hàm số (1) 2. Giả sử , ,A B C là ba ñiểm thẳng hàng thuộc ñồ thị (C), tiếp tuyến với (C) tại , ,A B C tương ứng cắt lại (C) tại ' ' ' , ,A B C . Chứng minh rằng ba ñiểm ' ' ', ,A B C thẳng hàng. Caâu 23. Cho hàm số 3 3 1y x x= − + (1) 1)Khảo sát sự biến thiên và vẽ ñồ thị (C) của hàm số (1). 2)ðường thẳng ( ∆ ): 1y mx= + cắt (C) tại ba ñiểm. Gọi A và B là hai ñiểm có hoành ñộ khác 0 trong ba ñiểm nói ở trên; gọi D là ñiểm cực tiểu của (C). Tìm m ñể góc ADB là góc vuông. Caâu 24. Cho hàm số ( )
File đính kèm:
- 33 dang toan kshs.pdf