Khảo sát hàm số và các vấn đề liên quan đến khảo sát hàm số - Ngụy Như Thái

Bài 7 : Cho hàm số: , có đồ thị là (C).

1/ Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.

2./ Tìm điều kiện của để phương trình sau có ba nghiệm phân biệt: .

3/ Tìm điểm thuộc đồ thị (C) sao cho tiếp tuyến với (C) tại điểm này có hệ số góc nhỏ nhất.

Bài 8: Cho hàm số : , đồ thị ( C )

1/ Khảo sát sự biến thiên và vẽ đồ thị hàm số

2/ Viết phương trình tíếp tuyến với (C ) tại điểm A( 0 , - 2)

3/ d là đường thẳng qua K( 1,0) có hệ số góc m . Tìm giá trị m để đường thẳng d cắt (C ) tại 3 điểm phân biệt .

 

doc4 trang | Chia sẻ: lethuong715 | Lượt xem: 653 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Khảo sát hàm số và các vấn đề liên quan đến khảo sát hàm số - Ngụy Như Thái, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Kh¶o s¸t hµm sè VÀ VẤN ĐỀ LIÊN QUAN ĐẾN KSHS
Hàm bậc ba:
 Bài 1: ( 3 điểm ) Cho hàm số y = x3 – 3x2 + 2
Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho.
Biện luận theo m số nghiệm của phương trình x3 – 3x2 + m = 0.
Vẽ đồ thị hàm số y = . 4)Viết pttt của (C) biết tt song song với đt y = -9x -3
 Bài 2 ( 3,0 điểm ) Cho hàm số y = x3 + 3x2 + mx + m – 2 . m là tham số
	1) Tìm m để hàm số có cực đại và cực tiểu 2) .Khảo sát và vẽ đồ thị hàm số khi m = 3.
 Bài 3: (3,0 điểm). Cho hàm số có đồ thị (C).
 1) Khảo sát và vẽ đồ thị (C). 3). Vẽ đồ thị hàm số y = 
 2. ) Dùng đồ thị (C) định k để phương trình sau có đúng 3 nghiệm phân biệt .
 Bài 4: Cho hàm số:, có đồ thị là (C).
1/ Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2./ Viết phương trình tiếp tuyến với (C) tại điểm .
Bài 5: Cho hàm số:, có đồ thị là (C). 1/ Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
2./ Viết phương trình tiếp tuyến với (C) biết tiếp tuyến song song với đường thẳng d: 
3/ Dùng đồ thị (C) biện luận theo số nghiệm của phương trình: .
Bài 6: Cho hàm số:, có đồ thị là (C).
1/ Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
2./ Viết phương trình tiếp tuyến với (C) tại điểm thuộc (C) có hoành độ 
Bài 7 : Cho hàm số:, có đồ thị là (C).
1/ Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
2./ Tìm điều kiện của để phương trình sau có ba nghiệm phân biệt: .
3/ Tìm điểm thuộc đồ thị (C) sao cho tiếp tuyến với (C) tại điểm này có hệ số góc nhỏ nhất.
Bài 8: Cho hàm số : , đồ thị ( C ) 
1/ Khảo sát sự biến thiên và vẽ đồ thị hàm số 
2/ Viết phương trình tíếp tuyến với (C ) tại điểm A( 0 , - 2) 
3/ d là đường thẳng qua K( 1,0) có hệ số góc m . Tìm giá trị m để đường thẳng d cắt (C ) tại 3 điểm phân biệt .
Bài 9: (2,0 điểm)
Cho hàm số y = x3 - (2m - 1)x2 + (2 - m)x + 2 (1), với m là tham số thực
1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 2
2. Tìm các giá trị của m để hàm số (1) có cực đại, cực tiểu và các điểm cực trị của đồ thị hàm số (1) có hoành độ dương.
 Bài10 (2,0 điểm). Cho hàm số y = x3 – 2x2 + (1 – m)x + m (1), m là số thực (K.A 2010)
	1.	Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 1.
	2.	Tìm m để đồ thị của hàm số (1) cắt trục hoành tại 3 điểm phân biệt có hoành độ x1, x2, x3 thỏa mãn điều kiện : 
Hàm hữu tỷ:
Bài 1 : (3,0 điểm) . Cho hàm số , có đồ thị là (C)
Khảo sát sự biến thiên và vẽ đồ thị hàm số.
Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có tung độ bằng -2.
 Bài 2: (3 điểm) Cho hàm số , có đồ thị (C).
Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
Tìm tất cả các giá trị của tham số m để đường thẳng d: y = mx + 2 cắt đồ thị (C) của hàm số đã cho tại hai điểm phân biệt.
Viết pttt của ( C) tại giao điểm của (C) với các trục tọa độ,
 Bài 3: (3,0 điểm)Cho hàm số (C) .
	1.Khảo sát và vẽ đồ thị (C) hàm số. Tìm trên (C) các điểm có tọa độ nguyên.
	2.Tìm phương trình tiếp tuyến với (C) tại điểm M thuộc (C) và có hoành độ xo= 1
 3. Vẽ đồ thị hàm số 
	Bài 4: ( 3 điểm) Cho hàm số có đồ thị là (C)
1. Khảo sát hàm số (1)
 2.Viết phương trình tiếp tuyến của (C) biết tiếp tuyến có hệ số góc là -2.
Bài 5: ( 3,0 điểm ) Cho hàm số có đồ thị (C)
Khảo sát sự biến thiên và vẽ đồ thị (C).
2. Viết phương trình tiếp tuyến với đồ thị (C) tại điểm có tung độ là 5 . 
C©u 6.( 3,0 ®iÓm)
	1. Kh¶o s¸t sù biÕn thiªn vµ vÏ ®å thÞ cña hµm sè 
	2.T×m trªn ®å thÞ ®iÓm M sao cho kho¶ng c¸ch tõ M ®Õn ®­êng tiÖm cËn ®øng b»ng kho¶ng c¸ch tõ M ®Õn tiÖm cËn ngang.
Bài 7: Cho hàm số có đồ thị (C)
1/ Khảo sát sự biến thiên và vẽ đồ thị hàm số
2/ Tìm m để (C) cắt đường thẳng (d): tại 2 điểm phân biệt A,B nhận 
I(-1;3) làm trung điểm AB.
Bài 8: Cho hàm số (C ).
1/ Khảo sát và vẽ đồ thị (C) của hàm số.
2/ Viết phương trình tiếp tuyến với (C ) tại giao điểm của (C) và trục tung.
3/ Tìm tất cả các điểm trên (C ) có toạ độ nguyên.
Bài9: Cho hàm sè 
1/ Khảo sát và vẽ đồ thị (C) của hàm số.
2/ Viết phương trình tiếp tuyến với với đồ thị (C) tại giao điểm của (C) và trục Ox.
3/ Tìm m để đường thẳng d : cắt (C) tại hai điểm phân biệt .
4/ Tiếp tuyến tại Mcắt hai tiệm cận của ( C) tại A , B .
 a/CMR : M là trung điểm AB b/ Tính dt() với I là giao điểm hai tiêm cận của ( C) .
Bài 10: Cho hàm số: có đồ thị là (C).
1/ Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
2/ Tìm trên (C) những điểm có tổng kcách từ đó đến hai tiệm cận của (C) nhỏ nhất.
3/ Lập phương trình tiếp tuyến với (C), biết tiếp tuyến đó song song với đường phân giác của góc phần tư thứ nhất.
Bài 11: (2 điểm). Cho haøm số y = đ
1.	Khaûo saùt söï bieán thieân vaø veõ ñoà thò (C) cuûa haøm soá đã cho.
2.	Tìm m để đường thẳng y = -2x + m cắt đồ thị (C) tại hai điểm phân biệt A, B sao cho tam giác OAB có diện tích bằng (O là gốc tọa độ).
Bài 12: (2,0 điểm)Cho hàm số 
Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1).
Viết phương trình tiếp tuyến của đồ thị (1), biết tiếp tuyến đó cắt trục hoành, trục tung lần lượt tại hai điểm phân biệt A, B và tam giác OAB cân tại gốc toạ độ O.
Hàm trùng phương:
Bài 1: (3,0 điểm) Cho hàm số 
	1.Khảo sát vẽ đồ thị (C) của hàm số.
	2.Dùng đồ thị (C) biện luận số nghiệm phương trình: 
 3. Vẽ đồ thị hàm số 
Bài 2: ( 3,0 điểm ) Cho hàm số có đồ thị (C)
Khảo sát sự biến thiên và vẽ đồ thị (C).
Dùng đồ thị (C ), biện luận theo số nghiệm thực của phương trình 
. 
 Bài 3: ( 3,0 điểm) Cho hàm số y = x4 – 2x2 +3, có đồ thị là ( C ).
Khảo sát và vẽ đồ thị ( C ) của hàm số.
Viết phương trình tiếp tuyến với ( C ) tại giao của ( C ) với trục Oy.
 Bài 4: (3.0 điểm) Cho hàm số
Khảo sát sự biến thiên và vẽ đồ thịhàm số trên.
Từ tìm m để phương trình có 4 nghiệm phân biệt. 
Viết phương trình tiếp tuyến với đồ thị (C) tại điểm cực đại của (C).
 Bài 5: ( 3 điểm ) 
Cho hàm số y = 
1. Khảo sát và vẽ đồ thị hàm số (C) 
2. T×m m để Ph­¬ng tr×nh cã 4 nghiÖm ph©n biÖt.
 Bài 6: ( 3 điểm ) 
 Cho hàm số y = (1)
1. Khảo sát và vẽ đồ thị hàm số (1).
2. ViÕt ph­¬ng tr×nh tiếp tuyến tại ®iÓm cã hoµnh ®é x = 1 
 Bài 7: ( 3 điểm ) Cho hàm số y = (1)
1. Khảo sát và vẽ đồ thị hàm số (1) khi m = 1.
2. T×m m ®Ó hµm sè cã 3 cùc trÞ.
 Bài 8: (3,0 ®iÓm) Cho hµm sè cã ®å thÞ (C)
Kh¶o s¸t sù biÕn thiªn vµ vÏ ®å thÞ (C).
Dïng ®å thÞ (C), h·y biÖn luËn theo m sè nghiÖm thùc cña ph­¬ng tr×nh 
 Bài 9: (3,5 ®iÓm) Cho haøm soá y = x4 – 2x2 + 1 coù ñoà thò (C).
	 	1) Khaûo saùt söï bieán thieân vaø veõ ñoà thò (C) cuûa haøm soá.
	2) Duøng ñoà thò (C), bieän luaän theo m soá nghieäm cuûa pt : x4 – 2x2 + 1 - m = 0.
	3) Vieát phöông trình tieáp tuyeán vôùi (C) bieát tieáp tuyeán ñi qua ñieåm A(0 ; 1).
Bài 10: Cho hàm số: 
1/ Khảo sát sự biến thiên ,và vẽ đồ thị của hàm số.
2/ Định để phương trình: có 6 nghiệm phân biệt
Bài 11: Cho hàm số: có đồ thị (C).
1/ Khảo sát và vẽ đồ thị (C) của hàm số.
2/ Viết PTTT với đồ thị (C) của hàm số tại điểm thuộc (C) có hoành độ .
3/ Tìm điều kiện của để phương trình sau có 4 nghiệm : .
Bài 12: Cho hàm số : 
1/ Tìm điều kiện của để hàm số có ba cực trị.
2/ Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi .
3/ Viết phương trình tiếp tuyến với đồ thị (C) tại điểm có hoành độ 
Bài 13: Cho hàm số : , đồ thị (C)
1/ Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
2/ Biện luận theo m số nghiệm của phương trình: 
3/ Viết phương trình tiếp tuyến của đồ thị biết nó song song với đường thẳng d: 
Bài 14: Cho hàm số: có đồ thị (Cm), (m là tham số).
1/ Tìm biết đồ thị hàm số đi qua diểm 
2/ Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi . 
Bài 15: Cho hàm số: , có đồ thị (Cm), ( m là tham số)
1/ Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi .
2/ Lập phương trình tiếp tuyến của (C1) tại điểm A(;0).
3/ Xác định m để hàm số (Cm) có 3 cực trị.
Bài 16: (2,0 điểm) Cho hàm số 
	1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho.
	2. Viết phương trình tiếp tuyến của đồ thị (C), biết tiếp tuyến vuông góc với đường thẳng 
Bài 17: (2 điểm)Cho hàm số y = 2x4 – 4x2 (1)
	1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1).
	2. Với các giá trị nào của m, phương trình có đúng 6 nghiệm thực phân biệt?
Bài 18: (2,0 điểm). 
	Cho hàm số y = x4 – (3m + 2)x2 + 3m có đồ thị là (Cm), m là tham số.
	1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m = 0.
	2. Tìm m để đường thẳng y = -1 cắt đồ thị (Cm) tại 4 điểm phân biệt đều có hoành độ nhỏ hơn 2.	

File đính kèm:

  • dockhao sat ham so 12.doc