Hình học lớp 12 - Phương pháp tọa độ trong không gian - Phạm Văn Sơn
VD6: Cho ba điểm không thẳng hàng: Hãy tìm tọa độ trọng tâm G của tam giác ABC.
VD7: Cho bốn diểm không đồng phẳng : Hãy tìm tọa độ trọng tâm G của tứ diện ABCD.
VD8: Cho điểm M(1; 2; 3). Tìm tọa độ hình chiếu vuông góc của điểm M:
a) Trên các mặt phẳng tọa độ: Oxy, Oxz, Oyz. b) Trên các trục tọa độ: Ox, Oy, Oz.
VD9: Cho điểm M(1 ; 2 ; 3). Tìm tọa độ của điểm đối xứng với điểm M:
a) Qua gốc tọa độ O b) Qua mặt phẳng Oxy c) Qua Trục Oy.
VD10: Cho hình hộp ABCD.A'B'C'D', A(1; 0; 1), B(2; 1; 2), D(1; -1; 1), C'(4; 5; -5). Tìm tọa độ của các đỉnh còn lại.
g đó cắt nhau.Xác định toạ độ giao điểm của nó. b) Viết phương trình tổng quát của mặt phẳng (P) chứa (d1),(d2). c) Viết phương trình đường phân giác của(d1),(d2) Bài5: cho hai đường thẳng (d1),(d2) có phương trình cho bởi : , a) Chứng tỏ rằng hai đường thẳng (d1),(d2) song song với nhau. b) Viết phương trình tổng quát của mặt phẳng (P) chứa (d1),(d2). c) Viết phương trình đường thẳng (d) trong (P) song song cách đều (d1),(d2) . Bài toán 6. Hai đường thẳng chéo nhau và bài tập liên quan Bài 1: (ĐHNN-96): cho hai đường thẳng (d1),(d2) có phương trình cho bởi : a) Chứng tỏ rằng hai đường thẳng (d1),(d2) chéo nhau. b) Viết phương trình đường thẳng vuông góc chung của (d1),(d2) . Bài 2: (ĐHTCKT-96): Trong không gian 0xyz , cho hai đường thẳng (d1),(d2) có phương trình cho bởi : , . Tìm toạ độ điểm A1 thuộc (d1) và toạ độ điểm A2 thuộc (d2) để đường thẳng A1A2 vuông góc với (d1) và vuông góc với (d2) . Bài 3: (ĐH L 1996) Cho hai đường thẳng (d1),(d2) có phương trình cho bởi : , a) Chứng tỏ rằng hai đường thẳng (d1),(d2) chéo nhau.Viết phương trình mặt phẳng (P),(Q) song song với nhau và lần lượt chứa (d1),(d2) b) Tính khoảng cách giữa (d1),(d2) . Bài 4: (ĐHTS-96): Cho hai đường thẳng (d1),(d2) có phương trình cho bởi : a) Chứng tỏ rằng hai đường thẳng (d1),(d2) chéo nhau. Tính khoảng cách giữa (d1),(d2) b) Viết phương trình đường thẳng vuông góc chung của (d1),(d2) . Bài 5: : (PVBC 99) Cho hai đường thẳng (d1),(d2) ,biết: ; a) Chứng tỏ rằng hai đường thẳng (d1),(d2) chéo nhau. b) Viết phương trình đường thẳng vuông góc chung của (d1),(d2) . Bài 6: (ĐHSPQui Nhơn-D-96): cho hai đường thẳng (d1),(d2) ,biết: a) Chứng tỏ rằng hai đường thẳng (d1),(d2) chéo nhau. b) Tính khoảng cách giữa (d1),(d2) Bài 7: : cho hai đường thẳng (d1),(d2) ,biết: a) Chứng tỏ rằng hai đường thẳng (d1),(d2) chéo nhau. b) Viết phương trình đường thẳng vuông góc chung của (d1),(d2) . Bài 8: (ĐH Huế 1998) Cho hai đường thẳng (d1),(d2) có phương trình cho bởi : , a) Chứng tỏ rằng hai đường thẳng (d1),(d2) chéo nhau. b) Viết phương trình mặt phẳng (P) chứa (d1) và song song với (d2) . c) Tính khoảng cách giữa (d1),(d2) . Bài 9: (ĐHNN-97): Cho hai đường thẳng (d1),(d2) có phương trình cho bởi : a) Chứng tỏ rằng hai đường thẳng (d1),(d2) chéo nhau. b) Tính khoảng cách giữa (d1),(d2) . c) Viết phương trình đường thẳng (d) đi qua M(1,1,1) và cắt đồng thời (d1),(d2) . Bài 10: (ĐHKT-98): Cho tứ diện SABC với các đỉnh S(-2;2;4), A(-2;2;0) ,B(-5;2;0) ,C(-2;1;1). Tính khoảng cách giữa hai cạnh đối SA và SB. V. Điểm, đường thẳng và Mặt Phẳng Bài toán1: Đường thẳng đi qua một điểm cắt cả hai đường thẳng cho trước. Bài 1: Viết phương trình đường thẳng đi qua A(1;2;3) và cắt cả hai đường thẳng a) b) Bài 2: Viết phương trình đường thẳng đi qua gốc toạ độ và cắt cả hai đường thẳng: , Bài 3: Viết phương trình đường thẳng (d) song song với đường thẳng (D) và cắt cả hai đường thẳng: Bài 4: (ĐHDL-97): Viết phương trình đường thẳng đi qua A(1;-1;0) và cắt cả hai đường thẳng: Bài 5: (ĐHTS-99): Viết phương trình đường thẳng đi qua A(1;-1;0) và cắt cả hai đường thẳng: Bài 6: Viết phương trình đường thẳng (d) vuông góc với (P) :x+y+z-2=0 và cắt cả hai đường thẳng (d1) và (d2): Bài 7: Viết phương trình đường thẳng (d) đi qua gốc toạ độ và cắt cả 2 đường thẳng (d1) và (d2): Bài toán 2: Đường thẳng đi qua một điểm vuông góc với cả hai đường thẳng cho trước. Bài 1: Viết phương trình đường thẳng đi qua A(1;2;3) và cắt cả hai đường thẳng (d1) ,(d2): a) b) Bài 2: (ĐHTCKT 1999) Viết phương trình đường thẳng (d) đi qua A(1;1;-2) song song với mặt phẳng (P) và vuông góc với đường thẳng (d): Bài toán 3: Đường thẳng đi qua một điểm vuông góc với một đường và cắt một đường thẳng khác Bài 1: (ĐHSP TPHCM-95): Viết phương trình đường thẳng đi qua A(0;1;1) và vuông góc với đường thẳng (d1) và cắt (d2) ,biết: Bài 2: Viết phương trình đường thẳng đi qua A(1;1;1) và vuông góc với đường thẳng (d1) và cắt (d2) ,biết : Bài 3: Viết phương trình đường thẳng cắt cả ba đường thẳng (d1) (d2) , (d3) và vuông góc với vectơ , biết: Bài 4: Tìm tất cả các đường thẳng cắt (d1), (d2) dưới cùng một góc, biết: Bài 5: (ĐHTL-97):Viết phương trình đường thẳng đi qua A(3;-2;-4) song song với mặt phẳng (P) :3x-2y-3z-7=0 và cắt đường thẳng (d) biết: Bài toán 4: Hình chiếu vuông góc củađiểm lên mặt phẳng Bài 1: Tìm toạ độ điểm đối xứng của A(-2;1;3) qua (P) cho bởi: 2x+y-z-3=0. Bài 2: (ĐHKTCN-97): Cho điểm A(1;2;3) và mặt phẳng (P) có phương trình :2x-y+2z-3=0 a) Lập phương trình mặt phẳng qua A và song song với (P). b) Gọi H là hình chiếu vuông góc của A lên (P). Xác định toạ độ của H Bài3: (ĐHGTVTTPHCM-99): Cho ba điểm A(1;1;2), B(-2;1;-1), C(2;-2;-1) .Xác định toạ độ hình chiếu vuông góc của điểm O lên mặt phẳng (ABC). Bài 4: (ĐHTCKT-2000): Cho điểm A(2;3;5) và mặt phẳng (P) có phương trình: 2x+3y+z-17=0 a) Lập phương trình đường thẳng (d) qua A và vuông gócvới (P). b) CMR đường thẳng (d) cắt trục 0z , tìm giao điểm M của chúng. c) Xác định toạ độ điểm A1 đối xứng với A qua (P). Bài 5: Cho mặt phẳng (P) và đường thẳng (d) có phương trình: (P): 2x+5y+z+17=0 và a) Xác định toạ độ giao điểm A của (d) và (P). b) Lập phương trình đường thẳng (d1) đối xứng với (d) qua (P) Bài 6: Cho mặt phẳng (P) và đường thẳng (d) có phương trình : và a) Xác định toạ độ giao điểm A của (d) và (P). b) Lập phương trình đường thẳng (d1) đối xứng với (d) qua (P) Bài 7: (ĐHQG 1998) Cho các điểm A(a;0;0); B(0;b;0); C(0;0;c) (a,b,c dương ). Dựng hình hộp chữ nhật nhận O,A,B,C làm 4 đỉnh và gọi D là đỉnh đối diện với đỉnh O của hình hộp đó a) Tính khoảng cách từ C đến mặt phẳng (ABD) b) Tính toạ độ hình chiếu vuông góc của C xuống mặt phẳng (ABD). Tìm điều kiện đối với a,b,c để hình chiếu đó nằm trong mặt phẳng (xOy) Bài toán 5: Hình chiếu vuông góc của đường thẳng lên mặt phẳng Bài 1: (ĐHQG TPHCM 1998) Trong không gian với hệ trục toạ độ trực chuẩn 0xyz ,cho đường thẳng (d) và mặt phẳng (P) có phương trình: (P):x+y+z-3=0 và Lập phương trình hình chiếu vuông góc của đường thẳng (d) lên (Q). Bài 2: Lập phương trình hình chiếu vuông góc của giao tuyến (d) của hai mặt phẳng 3x-y+z-2=0 và x+4y-5=0 lên mặt phẳng 2x-z+7=0. Bài 3: (ĐHMĐC-98) :Trong không gian với hệ toạ độ trực chuẩn 0xyz cho đường thẳng (d) và mặt phẳng (P) có phương trình: và (P): x-y+3z+8=0. Hãy viết phương trình chính tắc hình chiếu vuông góc của (d) lên (P) . Bài 4: Trong không gian 0xyz cho đường thẳng (d) và mặt phẳng (Q) có phương trình : . Lập phương trình hình chiếu vuông góc của đường thẳng (d) lên (Q) . Bài 5: Cho đường thẳng (d) và mặt phẳng (Q) có phương trình: (Q): x-y+z+10=0 Hãy viết phương trình chính tắc hình chiếu vuông góc (d1) của (d) lên (P) . Bài 6: (ĐH Càn Thơ 1998) Trong không gian với hệ toạ độ vuông góc 0xyz cho đường thẳng (d) và mặt phẳng (P) có phương trình: và (P): x+y+z+1=0. Hãy viết phương trình chính tắc hình chiếu vuông góc (d1) của (d) lên (P) . Bài 7: (HVQY-95): Trong không gian với hệ toạ độ vuông góc 0xyz cho đường thẳng (d) và mặt phẳng (P) có phương trình : và (P): x+y+z+1=0. a) Hãy viết phương trình chính tắc hình chiếu vuông góc (d1) của (d) lên (Oxy) . b) CMR khi m thay đổi đường thẳng (d1) luôn tiếp xúc với một đường tròn cố định trong mặt phẳng 0xy. Bài 8: (ĐHQG-98): Trong không gian với hệ toạ độ vuông góc 0xyz cho mặt phẳng (P) và hai đường thẳng (d1) và (d2) có phương trình: (P):x+y-z+1=0, , a) Hãy viết phương trình hình chiếu vuông góc (D1), (D2) của (d1), (d2) lên (P). Tìm toạ độ giao điểm I của (d1), (d2). b) Viết phương trình mặt phẳng chứa (d1) và vuông góc với (P). Bài toán 6: Hình chiếu vuông góc của điểm lên đường thẳng Bài 1: cho điểm A(1;2;3) và đường thẳng (d) có phương trình : . Xác định toạ độ hình chiếu vuông góc của A lên (d) .Từ đó tìm toạ độ điểm A1 đối xứng với A qua (d) . Bài 2: cho điểm A(1;2;-1) và đường thẳng (d) có phương trình : .Xác định toạ độ hình chiếu vuông góc của A lên (d) .Từ đó tìm toạ độ điểm A1 đối xứng với A qua (d) . Bài 3: cho điểm A(2;1;-3) và đường thẳng (d) có phương trình : .Xác định toạ độ hình chiếu vuông góc của A lên (d) .Từ đó tìm toạ độ điểm A1 đối xứng với A qua (d) . Bài 4: (ĐHhuế /A,B phân ban 98): Trong không gian 0xyz cho điểm A(2;-1;1) và đường thẳng (d) có phương trình : a) Viết phương trình mặt phẳng (P) đi qua A và vuông góc (d) . b) Xác định toạ độ điểm B đối xứng với A qua (d) . Bài 5: (Đề 60-Va): Lập phương trình đường thẳng qua A(3;2;1) và vuông góc với đường thẳng (d) và cắt với đường thẳng đó . Bài 6: (ĐHTM-2000): Lập phương trình đường thẳng qua A(2;-1;0) và vuông góc với đường thẳng và cắt với đường thẳng đó . Bài7: (HV BCVT-2000): Cho 2 đường thẳng (D) và (d) có phương trình : Lập phương trình đường thẳng (d1) đối xứng với (d) qua (D) Bài 8: (ĐHHH-1999): Trong không gian cho 2 đường thẳng (d1),(d2) : a) (d1) , (d2) có cắt nhau hay không b) Gọi B,C lần lượt là các điểm đối xứng của A(1;0;0) qua (d1),(d2) . Tính diện tích tam giác ABC Bài 9: (ĐHTM-1999): Trong không gian cho đường thẳng (d1) và mặt phẳng (P) : a) Tìm điểm đối xứng của điểm A(3;-1;2) qua đường thẳng (d) b) Viết phương trình hình chiếu vuông góc của đường thẳng (d) trên mặt phẳng (P) Bài10: Trong không gian 0xyz cho bốn đường thẳng (d1), (d2), (d3), (d4) có phương trình : , , , CMR các điểm đối xứng A1, , A2, , A3, A4 của A bất kì trong không gian qua (d1), (d2), (d3), (d4) là đồng phẳng. Lập phương trình mặt phẳng chứa chúng . Bài toán 7: Điểm và mặt phẳng Bài 1: cho hai điểm A(1;0;2) ;B(2;-1;3) và mặt phẳng (P): x-2y+z-4=0.Tìm điểm M thuộc (P) sao cho AM+BM nhỏ nhất. Bài 2: cho hai điểm A(1;1;0) ;B(0;-1;1) và mặt phẳng (P): x-2y+z-4=0.Tìm điểm M thuộc (P) sao cho AM+BM nhỏ nhất. Bài 3: (ĐHhuế /A hệ chưa phân ban 97):Trong không gian với hệ toạ độ 0xyz cho mặt phẳng (P): 2x-y+z+1=0 và hai điểm A(3;1;0), B(-9;4;9) .Tìm toạ độ điểm M trên mặt phẳng (P) sao cho là lớn nhất . Bài 4: (ĐHQG-2000):Cho mặt phẳng (P):x+y+z-1=0 và hai điểm A(1;-3;0
File đính kèm:
- Tai lieu on thi DH.doc