Giáo án Tự chọn 11 cơ bản - Tiết 1 đến 11
TIẾT 1
GIỚI HẠN CỦA DÃY SỐ
A.MỤC TIÊU
Củng cố cho học sinh các kiến thức
§ khái niệm giới hạn của dãy số , định nghĩa giới hạn dãy số .
§ các định lý về giới hạn trình bày trong sgk.
§ khái niệm cấp số nhân lùi vô hạn và công thức tính tổng của nó. Nhận
dạng cấp số nhân lùi vô hạn .
B. TIẾN TRÌNH BÀI HỌC :
HĐ 1 : Các phép toán
→ )(lim Nếu LxfaxaxKx n n n n nn =⇒=≠∈∀ ∞→∞→ )(limlim:; 2./các định lý : Định Lý 1 : Lxf ax = → )(lim là duy nhất Định Lý 2 : [ ] [ ] 0)(;)(lim)(lim 0)(lim; )(lim )(lim )( )( lim )(lim).(lim)().(lim )(lim)(lim)()(lim ≥= ≠= = ±=± →→ → → → → →→→ →→→ xfxfxf xg xg xf xg xf xgxfxgxf xgxfxgxf axax ax ax ax ax axaxax axaxax Lấy dãy 1→nx 21 1 1 )( 2 →+= − − = n n n n x x x xf f(x) không xđ tại x = 1 Từ đó dẫn Hsinh đến định nghĩa • Các định lý trên vận dụng từ ĐN và các đl giới hạn dãy số Hsinh vận dụng ĐN và các ĐL qua các VD Chứng Minh : 1./ ax ax = → lim Hiển nhiên do : axn =lim 2.,/ kk ax ax = → lim Phân tích : k kk k aaaaaxxxxx =→= ............. 3./ 1)1(lim 2 )1)(2( lim 2 23 lim 22 2 2 =−= − −− = − +− →→→ x x xx x xx xxx 4./ f(x) không xđ tại x = 3 Nguyễn Thành Hiếu – THPT Đầm Hà Tự chọn 11cb 3 Định Lý 3 : Kxhxfxg /)();();( )()()( xhxfxg ≤≤ Nếu : LxfLxhxg axaxax =⇒== →→→ )(lim)(lim)(lim Định Lý 4 : x đủ gần a và )0)((;0)( xfxf Và Lxf ax = → )(lim Thì : )0(;0 ≤≥ LL Tìm 33 21 lim 3 − −+ → x x x Hsinh nhân,chia biểu thức liên hợp : 2 1 )21(3 33 lim 33 21 lim 33 = ++ + = − −+ →→ x x x x xx Nguyễn Thành Hiếu – THPT Đầm Hà Tự chọn 11cb 4 TIẾT 3 : BÀI TẬP 1./Trọng Tâm : Vận dụng ĐN giới hạn của hàm số,các tính chất vào giải BT Hoạt động của GV Hoạt động của HS GV cho HS thực hiện các BT BT1 : Tìm d./ 3 152 lim 2 3 − −+ → x xx x g./ 1 1 lim 23 1 − −+− → x xxx x BT2 : a./ h xhx h 33 0 2)(2 lim −+ → BT3 : h xhx h −+ →0 lim (x > 0 ) BT4 : a./ x xxx x 11 lim 2 0 ++−+ → BT nậng cao : x x x 3 11 lim 3 0 −− → 1./Hsinh nhận xét dạng vô định : 0 0 Phân tích : 8)5(lim 3 )5)(3( lim 3 152 lim 33 2 3 =+= − +− = − −+ →→→ x x xx x xx xxx 2)1(lim 1 )1)(1( lim 1 1 lim 2 1 2 1 23 1 =+ = − +− = − −+− → →→ x x xx x xxx x xx 2./Hsinh nhận xét : h là biến , x là hằng Khử dạng vô định Aùp dụng : [ ] [ ] 222 2233 6)()(2 )()(22)(2 xxhxxhx h xhxxhxh h xhx →++++= ++++ = −+ Khi 0→h 3./Hsinh nhân chia BT liên hợp của xhx −+ 4./PP nhân ,chia BT liên hợp : BTLH của ba ± là ba ∓ BTLH của 33 ba ± là )( 333 2 baba +∓ TIẾT 4 : HÀM SỐ LIÊN TỤC A.MỤC TIÊU Củng cố cho HS các kiến thức : khái niệm hàm số liên tục (tại 1điểm,trên 1khoảng). Biết các định lý về hàm đa thức , phân thức hữu tỷ liên tục trên từng tập xác định của chúng . D. TIẾN TRÌNH BÀI HỌC : HĐ1 : Oân tập lại kiến thức Hoạt động của GV Hoạt động của HS Nguyễn Thành Hiếu – THPT Đầm Hà Tự chọn 11cb 5 1./Hàm số liên tục tại 1 điểm : cho hs nhắc lại ĐN hàm số liên tục tại 1 điểm a./Định Nghĩa : f(x)/(a;b). f(x) liên tục tại );(0 bax ∈ nếu : )()(lim 0 0 xfxf xx = → )()(lim)(lim 0 0 xfxfxf xxxxx ==⇔ −+ →→ y 1 O x Hệ Quả : : f(x) liên tục trên [a;b] và 0)().( <bfaf thì 0)(:);( =∈∃ cfbac y a f(b) x b f(a) GV cho VD : Chứng minh PT 01)( 5 =−+= xxxf có nghiệm trên (- 1;1) Từ định nghĩa ,Hsinh nêu các yếu tố để 1 hàm số liên tục tại 1 điểm : Thực hiện VD : a./Xét tính liên tục tại 10 =x = ≠ − − = 1 1 1 1 )( 2 xa x x x xf f(x)/R 2)1(lim 1 1 lim )1( 1 2 1 =+= − − = →→ x x x af xx Để f liên tục tại 10 =x thì a = 2 b./ ≤ >+ = 0 01 )( 2 xx xx xf Hsinh nhận xét : ⇒≠ = = −+ − + →→ → → )(lim)(lim 0)(lim 1)(lim 00 0 0 xfxf xf xf xx x x gián đoạn tại 00 =x Hsinh kiểm chứng : Hs f(x) liên tục trên [-1;1] 03)1().1( <−=− ff từ đó KL : PT có ít nhất 1 nghiệm thuộc (-1;1) Nguyễn Thành Hiếu – THPT Đầm Hà Tự chọn 11cb 6 TIẾT 5 : BÀI TẬP 1./Trọng Tâm : Vận dụng ĐN hàm so liên tục và các tính chất vào giải BT Hoạt động của GV Hoạt động của HS GV cho BT BT1 : tìm các điểm gián đoạn c./ xx xx xf 2 65 )( 2 2 − +− = d./ x tgx xf =)( e./ = ≠ − − = 48 4 4 16 )( 2 x x x x xf BT2 : Tìm f(0) ? để f(x) liên tục tại x = 0 a./ x xx xf 2 )( 2 − = BT3 : Tìm a ? để f(x) liên tục với mọi x Vẽ đồ thị > ≤ = 23 2 )( 2 x xax xf BT4 : CMR PT sau có ít nhất 2 nghiệm trên (-1;1) 0324 24 =−−+ xxx Hsinh nêu các dấu hiệu nhận biết 1 hàm số gián đoạn tại 1 điểm có 0xx = Xảy ra ít nhất 1 trong dấu hiệu : - Không xác định tại 0x - Không có )(lim 0 xf xx→ - )()(lim 0 0 xfxf xx ≠ → 1./a./Hàm số xx xx xf 2 65 )( 2 2 − +− = không xđ tại 2;0 == xx nên gián đoạn tại 2;0 == xx vì f(x) là hàm hữu tỉ nên liên tục trên TXĐ { }2;0\RD = e./Nhận xét : 8)4()(lim 4 == → fxf x Vậy f(x) liên tục trên R 2./ 2 2 lim 2 0 −= − → x xx x Vậy để f(x) liên tục tại x = 0 thì f(0) = -2 3./ afxf x 4)2()(lim 2 == −→ 3)(lim 2 = +→ xf x . Để hs LT tại x = 2 thì 4 3 34 =⇔= aa 4./Hsinh nhận xét : 012)3.(4)0().1( <−=−=− ff 062).3()1().0( <−=−=ff Nguyễn Thành Hiếu – THPT Đầm Hà Tự chọn 11cb 7 TIẾT 6 : VECTƠ TRONG KHÔNG GIAN I. MỤC TIÊU Củng cố cho học sinh các kiến thức + các định nghĩa, vectơ trong không gian, hai vectơ bằng nhau, vectơ không, độ dài vectơ. + các phép toán về vectơ, công trừ các vectơ, nhân vectơ với một số thực. + định nghĩa ba vectơ không đồng phẳng, điều kiện để ba vectơ đồng phẳng. + định nghĩa tích vô hướng của hai vectơ, vận dụng tích vô hướng của hai vectơ để giải các bài toán yếu tố hình học không gian. Hoạt động 1: Điều kiện đồng phẳng của ba vectơ .Hoạt dộng của giáo viên Hoạt động của học sinh + Yêu cầu học sinh Điều kiện đồng phẳng của ba vectơ a không song song với b . a,b, c đồng phẳng khi c ma nb= + , m, n không đồng thời bằng không và duy nhất. OC mOA nOB c ma nb = + ⇔ = + Vì a,b không cùng thuộc một phương nên m, n được xác định duy nhất. GV cho VD : cho tứ diện ABCD .gọi M,N,P,Q lần lượt là trung điểm AB,AC,CD,BD .a.) Chứng minh MNPQ là hình bình hành. b.)Phân tích MN theo các vectơ BC,AD . GV: Vậy trong mặt phẳng (OCXX’), hãy phân tích OX theo hai vectơ OX' và OC , sự phân tích đó là duy nhất. + Trong mặt phẳng (AOBX’), hãy phân tích OX' theo các vectơ OA,OB OX' = mOA nOB+ , m, n được xác định duy nhất. – Ví dụ minh họa + Cho ABCD là hình thoi, IB = IA và KB = KF. Chứng minh rằng: a. FH,IK,BG đồng phẳng. b. Phân tích BG theo các vectơ FH,IK HS: . Chứng minh MN,BC,AD đồng phẳng. Gợi ý: Dựa vào định nghĩa (BC,AD song song với mặt phẳng (MNPQ)) Hình 3.7 HS: Ghi giả thiết, kết luận và vẽ hình Gợi ý: Xét trong mặt phẳng (MNPQ). Phân tích vectơ MN , MP . So sánh MQ,AD và MP,BC HS: Nêu cách chứng minh + Nêu cách giải + So sánh BD,FH và DG,IK BG FH IK⇒ = + HS: Nêu cách giải Phân tích AI theo các vectơ AB,AD ( )1AI AB AD2 1 1 AM AB AD AE 2 2 ⇒ = + = + + TIẾT 7 : LUYỆN TẬP I. MỤC TIÊU Vận dụng các kiến thức trọng tâm vào giải bài tập II. NỘI DUNG VÀ TIẾN TRÌNH LÊN LỚP. Nguyễn Thành Hiếu – THPT Đầm Hà Tự chọn 11cb 8 .Hoạt dộng của giáo viên Hoạt động của học sinh Cho BT : BT Cho tứ diên ABCD .Gọi M,N lần lượt là trung điểm AB,CD , AB=AC=AD= a. 0 ^^ 60== DABCAB Chứng minh : CDABa ⊥.) ABMNa ⊥.) GV : gọi 1 hs nhắc lại quy tắc 3 điểm Tích vô hướng của 2 vécto ĐK vuông góc ? HS : vẽ hình Xác định các đường “ - - - -“ A M B D N C a.) 0 22 ).(. 22 =−= −= aa ACADABCDAB CDAB ⊥⇔ b.)Aùp dụng quy tắc 3 điểm : ( ) ( )CNDNBCADMBMAMN CNBCMBMN DNADMAMN +++++= −−−−−−−−−−−−− ++= ++= 2 )(2 ABACADBCADMN −+=+=⇔ 2 ...2 ABABACABADBCADABMN −+=+=⇔ 0 22 ..2 2 22 =−+=⇔ a aa ABMN ⇔ ABMN ⊥ Nguyễn Thành Hiếu – THPT Đầm Hà Tự chọn 11cb 9 TIẾT 8 : QUAN HỆ VUÔNG GÓC I. MỤC TIÊU Củng cố cho học sinh các kiến thức + các định nghĩa + các định lý về điều kiện đường thẳng vuông góc đường thẳng. đường thẳng vuông góc mặt phẳng + vận dụng vào giải các bài toán yếu tố hình học không gian. Hoạt động 1: Điều kiện đường thẳng vuông góc đường thẳng. đường thẳng vuông góc mặt phẳng .Hoạt dộng của giáo viên Hoạt động của học sinh GV cho BT : Cho hình chĩp S.ABC cĩ đáy ABC là tam giác vuơng tại A, AB=a, AC=2a. SA=2a và SA vuơng gĩc mp(ABC). M là 1 điểm nằm trên đoạn AB 1. Chứng minh AC ⊥ SM. 2. Tính gĩc giữa SA và (SBC) 3. Mặt phẳng (α) qua M và (P) ⊥ AB. Tìm thiết diện mặt phẳng (α) cắt hình chĩp, thiết diện là hình gì? S P A C M N B HS vẽ hình,chỉ rõ các đường khuất Câu 1: - Chứng minh được AC ⊥ (SAB) - Suy ra AC ⊥ SM Câu 2: - Gọi I là hình chiếu của A lên BC chứng minh BC ⊥ (SIA) 1đ - Gọi H là hình chiếu của A lên SI chứng minh AH ⊥ (SBC) và suy ra gĩc ASI là gĩc cần tìm 1đ - Tính đúng Câu 3: - Chứng minh (α)//(SAC) - Tìm đúng thiết diện - Kết luận (α)=(MNP) Nguyễn Thành Hiếu – TH
File đính kèm:
- Tuchon11cobanHKII.pdf