Giáo án Hình học 9 - Tiết 31, 32, 33

Đề bài: Cho ABC (AB = AC) nội tiếp trong đ¬ường tròn (O). Các đư¬ờng cao AG, BE, CF cắt nhau tại H

a) Chứng minh tứ giác AEHF nội tiếp . Xác định tâm I của đư¬ờng tròn ngoại tiếp tứ giác đó .

b) Chứng minh : AF . AC = AH . AG

c) Chứng minh GE là tiếp tuyến của (I)

- GV treo bảng phụ ghi đầu bài bài tập về nhà, yêu cầu HS đọc đề bài, vẽ hình và ghi GT, KL của bài toán .

- Bài toán cho gì? yêu cầu gì?

- Theo em để chứng minh tứ giác AEHF là tứ giác nội tiếp, ta cần chứng minh gì?

- Hãy chứng minh tứ giác có 2 góc vuông đối diện nhau?

- HS chứng minh miệng, GV chốt lại vấn đề.

- Có nhận xét gì về điểm E và F của tứ giác AEHF ? Vậy E , F nằm trên đ¬ờng tròn nào ? Tâm ở đâu ?

- Để chứng minh hệ thức trên ta chứng minh gì ?

- Hãy chứng minh: AFH đồng dạng với AGB ?

- HS chứng minh .

- Để chứng minh GE là tiếp tuyến của (I) ta cần chứng minh gì?

- Gợi ý : Chứng minh GE IE tại E .

- HS suy nghĩ chứng minh bài .

 

- Gợi ý : Xét cân IAE , cân GBE và tam giác vuông HEA .

 

- HS lên bảng trình bày , GV chữa bài và chốt cách làm

 

doc9 trang | Chia sẻ: lethuong715 | Lượt xem: 785 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Giáo án Hình học 9 - Tiết 31, 32, 33, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
eo định lý nào? 
- GV cho 1 HS lên bảng chứng minh sau đó nhận xét chữa bài và chốt cách chứng minh . 
*) Giải bài tập 39 (SBT - 79) 
Xét tứ giác EHCD có : 
(góc có đỉnh bên trong đường tròn ) (1) 
(góc nội tiếp chắn cung SC ) (2)
Theo ( gt ) ta có : ( 3) 
Từ (1) ; (2) ; (3) suy ra :
Vậy: tứ giác EHCD có tổng hai góc đối diện nhau bằng 1800 đ tứ giác EHCD nội tiếp .
*) Bài tập 40 (SBT - 40) 
GT : Cho D ABC ; BS , CS là phân giác trong ; BE , CE là phân giác ngoài 
KL : Tứ giác BSCE là tứ giác nội tiếp .
Chứng minh :
Theo (gt) ta có:
* BS là phân giác trong của gócB =>(1)
* BE là phân giác ngoài của =. ( 2) 
Mà (3)
Từ (1) ; (2) và (3) suy ra :
=> (*) 
- Chứng minh tương tự với CS và CE là phân giác trong và phân giác ngoài của góc C ta cũng có : 
=> (**) 
Từ (*) và (**) suy ra tứ giác BSCE là tứ giác nội tiếp . 
IV. Củng cố (2 phút)
 - Nêu lại tính chất của tứ giác nội tiếp . 	
-Vẽ hình ghi GT, KL bài tập 42 (SBT -79) 
GT : Cho (O1) cắt (O2) cắt (O3) tại P 
(O1) cắt (O2) tại B ; (O1) cắt (O3) tại A ; (O2) cắt (O3) tại C, DB cắt (O1) tại M ; DC cắt (O3) tại N 
KL : Chứng minh M , A , N thẳng hàng 
Trường THCS Trần Quốc Toản
 Tiết:31 Tiết 31: KIỂM TRA 15 PHÚT 
TỰ CHỌN TOÁN 9 – HỌC KÌ II
I. Ma trận đề:
Cấp độ
Chủ đề
Nhận biết
Thông hiểu
Vận dụng
Cộng
1. Phương trình bậc hai
 Nhẩm được nghiệm của phương trình bậc hai
Giải được phương trình bậc hai bằng công thức nghiệm
2
4,0
70%
Số câu
Số điểm
Tỉ lệ
1(Câu: 1a)
3,0
30%
1(Câu: 1b)
3,0
30%
2. Tứ giác nội tiếp
Vẽ được hình theo đề bài
Vận dụng các kiến thức về đường tròn chứng minh được tứ giác nội ti6p1
1
3,0
30%
Số câu
Số điểm
Tỉ lệ
1,0
10%
1(Câu: 2)
3,0
30%
Tổng số câu
1
1
1
3
Tổng số điểm
4,0đ
3,0
3,0 đ
10,0
Tỉ lệ
40%
30%
30%
100%
II. ĐỀ: 
Tiết 31: KIỂM TRA 15 PHÚT TỰ CHỌN TOÁN 9 – HỌC KÌ II
Năm học: 2013 - 2014
Điểm
Trường THCS Trần Quốc Toản
Lớp: 9-5
Họ và tên HS : --------------------------------------
Lời phê :
ĐỀ: 
Bài 1: (6 điểm) Giải các phương trình sau:
x2 – 4x – 1 = 0
Bài 2: (6 điểm) Từ điểm M nằm ngoài đường tròn (O), vẽ cát tuyến MAB và tiếp tuyến MN với đường tròn (O) (điểm A nằm giữa hai điểm M và B, N là tiếp điểm). Gọi H là trung điểm của dây AB. Chứng minh tứ giác ONMH nội tiếp đường tròn
ĐÁP ÁN
Bài:
Nội dung:
Điểm:
1
a) x2 – 3x + 2 = 0
Dạng: a + b + c = 1 +(-3) + 2 = 0 
1,0
=> x1 = 1; x2 = 2
2,0
x2 – 4x – 1 = 0
’ = (-2)2 – 1(-1) = 5
1,0
x1 = 2 + ; x2 = 2 - 
2,0
2
1,0
Chứng minh: NOHM là tứ giác nội tiếp.
Ta có ( Tính chất tiếp tuyến)
1,0
(do H là trung điểm cua dây AB )
1,0
=> + 
nên tứ giác NOHM nội tiếp đường tròn đường kính OM
1,0
V. Hướng dẫn về nhà (2 phút)
Học thuộc định nghĩa , định lý . 
Xem lại các bài tập đã chữa . 
Giải bài tập 42 ( SBT - 79 ) 
HD : Tính = 1800 
+ Xét các tứ giác nội tiếp : MAPB ; NAPC và DBPC dùng tổng các góc đối trong tứ giác nội tiếp bằng 1800 từ đó suy ra góc MAN bằng 1800 . 
*******************************
Chủ đề IX
TỨ GIÁC NỘI TIẾP
Tiết 32
LUYỆN TẬP CÁC BÀI TOÁN VỀ TỨ GIÁC NỘI TIẾP(tt) 
	Ngày soạn : ..//14	 Ngày dạy : ..//14	
A/MỤC TIÊU: Học xong tiết này HS cần phải đạt được :
	1/ Kiến thức 
- Tiếp tục củng cố cho HS khái niệm về tứ giác nội tiếp một đờng tròn, nắm đợc định lý về tứ giác nội tiếp .
- Biết vận dụng định nghĩa, định lý để chứng minh một tứ giác nội tiếp .
	2/ Kĩ năng: Rèn kỹ năng chứng minh tứ giác nội tiếp và vận dụng tứ giác nội tiếp để chứng minh bài toán hình liên quan. 
	3/ Thái độ: Có thái độ học tập đúng đắn, tinh thần hoạt động tập thể.
B/CHUẨN BỊ CỦA THẦY VÀ TRÒ: Thước, compa, thước đo độ
C/TIẾN TRÌNH BÀI DẠY
I. Tổ chức (1 phút) 
II. Kiểm tra bài cũ (thông qua bài giảng)
III. Bài mới (35 phút)
Hoạt động của GV và HS
Nội dung
1. Bài tập 41 (SBT/79) (phút)
- GV ra bài tập 41 (SBT - 79), gọi HS đọc đầu bài sau đó vẽ hình vào vở . 
- Bài toán cho gì? yêu cầu chứng minh gì? 
- Để chứng minh tứ giác ABCD nội tiếp, ta cần chứng minh gì ? 
- GV cho HS thảo luận nhóm đưa ra cách chứng minh . 
- GV gọi 1 nhóm đại diện chứng minh trên bảng, các nhóm khác theo dõi nhận xét và bổ sung lời chứng minh . 
- Gợi ý : Dựa theo gt tính các góc : 
sau đó suy ra từ định lý . 
- Tứ giác ABCD nội tiếp, góc AED là góc gì có số đo tính theo cung bị chắn như thế nào? 
- Hãy tính số đo góc AED theo số đo cung AD và cung BC rồi so sánh với hai góc DBA và góc BAC ? 
- GV cho HS làm sau đó gọi 1 HS lên bảng tính . 
GT : D ABC (AB = AC ) 
 ; DA = DB ; 
KL :a) Tứ giác ACBD nội tiếp 
 b) Tính góc AED.
 Chứng minh : 
a) Theo (gt) ta có D ABC cân tại A và 
nên:
Theo gt có DA = DB =>Tam giác DAB cân tại D => 
Xét tứ giác ACBD có : 
 = 400 + 200 + 400 +800 = 1800 
Vậy: Tứ giác ACBD nội tiếp 
b) Vì tứ giác ACBD nội tiếp nên ta có : 
(góc có đỉnh bên trong đường tròn) 
(góc nội tiếp chắn cung AD và BC) 
=> 
Vậy: góc AED bằng 600 . 
2. Bài tập 43 (SBT/79) ( phút)
- GV ra tiếp bài tập 43 - SBT, vẽ hình minh hoạ trên bảng yêu cầu HS thảo luận tìm cách chứng minh bài toán? 
- Nếu hai điểm cùng nhìn một cạch cố định dưới những góc bằng nhau thì 4 điểm đó thoả mãn điều kiện gì? áp dụng tính chất nào? 
- Vậy theo em bài toán trên nên chứng minh như thế nào ? 
- Gợi ý : 
+ Chứng minh AEB đồng dạng với DEC sau đó suy ra cặp góc tương ứng bằng nhau? 
+ Dùng quỹ tích cung chứa góc chứng minh 4 điểm A , B , C , D cùng thuộc một đường tròn . 
- GV cho HS chứng minh sau đó lên bảng trình bày lời chứng minh . 
- GV nhận xét và chữa bài chốt cách làm . 
GT : AC BD = 
 AE.EC = BE.ED 
KL : Tứ giác ABCD nội tiếp . 
Chứng minh : 
Theo gt, ta có : AE . EC = BE . ED suy ra ta có : 
 (1)
Lại có : ( đối đỉnh ) (2)
Từ (1) và (2) suy ra : 
AEB đồng dạng với DEC => Đoạn thẳng BC cố định , (cmt); A và D ở trong cùng một nửa mặt phẳng bờ là BC 
Nên: 4 điểm A , B , C , D cùng nằm trên một đường tròn (theo quỹ tích cung chứa góc) 
IV. Củng cố (7 phút) - Nêu lại tính chất của tứ giác nội tiếp . 	
	 - Nhắc lại một số cách chứng minh tứ giác nội tiếp.
*) Bài tập củng cố: Quan sát hình vẽ và điền vào dấu “...” hoàn thành các khẳng định sau cho đúng . 
1. Góc ở tâm là góc . . . . . . có số đo bằng số đo của cung AD . 
2. Góc nội tiếp là các góc . . . . . . . . . . . . . . . . . . . .
3. Góc AED là góc . . . . . . . . . . . . . . . . . . . . . . . có số đo 
bằng . . . . số đo của cung . . . . . . . và cung . . . . . . . 
4. Góc ACD có số đo bằng nửa số đo của góc . . . . . . . . . . . 
V. Hướng dẫn về nhà (2 phút) 
Làm tiếp các bài tập và ôn luyện lại lí thuyết.
* Bài tập về nhà:
Cho D ABC ( AB = AC ) nội tiếp trong đường tròn (O). Các đường cao AG, BE, CF cắt nhau tại H .
a) Chứng minh tứ giác AEHF nội tiếp. Xác định tâm I của đường tròn ngoại tiếp tứ giác đó . 
b) Chứng minh : AF . AC = AH . AG 
c) Chứng minh GE là tiếp tuyến của (I)
Chủ đề IX
TỨ GIÁC NỘI TIẾP
Tiết 33
LUYỆN TẬP CÁC BÀI TOÁN VỀ TỨ GIÁC NỘI TIẾP(tt) 
	Ngày soạn : ..//14	 Ngày dạy : ..//14	
A/MỤC TIÊU: Học xong tiết này HS cần phải đạt được :
	1/ Kiến thức: Củng cố, ôn tập lại cho học sinh các k/t về góc với đường tròn, tứ giác nội tiếp .	2/ Kĩ năng: Rèn kỹ năng vận dụng các kiến thức đã học trong chuyên đề để làm một số bài toán tổng hợp về đường tròn .
	3/ Thái độ: Có thái độ học tập đúng đắn.	
B/CHUẨN BỊ CỦA THẦY VÀ TRÒ
- GV: 
Bảng phụ, thớc, compa, êke
- HS:
Thước, compa, êke
C/TIẾN TRÌNH BÀI DẠY
I. Tổ chức (1 phút)	
II. Kiểm tra bài cũ (7 phút)	
- HS1: 
Nêu các góc có liên quan với đường tròn đã học ?
Phát biểu các định lý, tính chất giữa góc và đường tròn ?
- HS2:
Nêu các dấu hiệu nhận biết tứ giác nội tiếp ?
III. Bài mới (27 phút)
Hoạt động của GV và HS
Nội dung
1. Bài tập 73 (SBT/84) (12 phút)
- GV ra bài tập 73 (SBT - 84) yêu cầu học sinh đọc đề bài, vẽ hình và ghi GT, KL của bài toán .
- Bài toán cho gì? yêu cầu gì? 
- Thảo luận và đưa ra cách chứng minh các hệ thức trên . 
- Để chứng minh các hệ thức trên ta thường đi chứng minh gì? (tam giác đồng dạng) 
- Theo em nên chứng minh những tam giác nào đồng dạng? 
- GV cho HS suy nghĩ và nêu cách làm . 
- GV gợi ý: Chứng minh: AA’B đồng dạng với BAB’ (g.g) 
- HS làm sau đó lên bảng trình bày - GV nhận xét và chữa bài . 
- Tương tự đối với hệ thức ở phần (b) ta nên chứng minh các cặp tam giác nào đồng dạng?
- HS nêu GV nhận xét và gợi ý lại : C/m:A’MA đồng dạng với A’AB .
- Cách khác : áp dụng hệ thức lượng trong tam giác vuông ABA’
GT : Cho (O ; ) 
 Ax , By là hai tiếp tuyến của (O) 
 M ẻ (O) ; 
KL : a) AA’ . BB’ = AB2 
 b) A’A2 = A’M . A’B 
Chứng minh 
a) Ta có (góc nội tiếp chắn nửa đường tròn)
Xét AA’B và BAB’ có 
(vì Ax và By là tiếp tuyến) 
 (cùng phụ với góc BAB’) 
=> AA’B đồng dạng với BAB’ (g.g) 
Suy ra:
 ( đpcm ) 
b) Xét A’MA và A’AB có . 
 + 
 + ( chung ) 
=> A’MA đồng dạng với A’AB 
Suy ra:
 (đpcm ) 
2. Chữa bài về nhà ( 15 phút)
Đề bài: Cho ABC (AB = AC) nội tiếp trong đường tròn (O). Các đường cao AG, BE, CF cắt nhau tại H 
a) Chứng minh tứ giác AEHF nội tiếp . Xác định tâm I của đường tròn ngoại tiếp tứ giác đó . 
b) Chứng minh : AF . AC = AH . AG 
c) Chứng minh GE là tiếp tuyến của (I)
- GV treo bảng phụ ghi đầu bài bài tập về nhà, yêu cầu HS đọc đề bài, vẽ hình và ghi GT, KL của bài toán . 
- Bài toán cho gì? yêu cầu gì? 
- Theo em để chứng minh tứ giác AEHF là tứ giác nội tiếp, ta cần chứng minh gì? 
- Hãy chứng minh tứ giác có 2 góc vuông đối diện nhau? 
- HS chứng minh miệng, GV chốt lại vấn đề. 
- Có nhận xét gì về điểm E và F của tứ giác AEHF ? Vậy E , F nằm trên đờng tròn nào ? Tâm ở đâu ? 
- Để chứng minh hệ thức trên ta chứng minh gì ? 
- Hãy chứng minh: AFH đồng dạng với AGB ?
- HS chứng minh .
- Để chứng minh GE là tiếp tuyến của (I) ta cần chứng minh gì? 
- Gợi ý : Chứng minh GE IE tại E . 
- HS suy nghĩ chứng minh bài . 
- Gợi ý : Xét cân IAE , cân GBE và tam giác vuông HEA . 
- HS lên bảng trình bày , GV chữa bài và chốt cách làm
Chứng minh 
 a) Theo gt, ta có : AG, BE, CF

File đính kèm:

  • docCHU DE 9 TU GIAC NOI TIEP 3 TIET.doc