Giáo án Đại số Giải tích 11 tiết 51: Giới hạn của dãy số (tt)
§1. GIỚI HẠN CỦA DÃY SỐ(tt)
1. Mục tiêu: (như tiết 50)
2. Chuẩn bị:
a. Giáo viên:
- Sách giáo khoa.
- Tài liệu hướng dẫn giảng dạy toán lớp 11.
b. Học sinh:
- Xem cách giải và giải trước.
3. Phương pháp dạy học:
- Gợi mở, vấn đáp.
- Phát hiện và giải quyết vấn đề.
- Thực hành giải toán
Tiết PPCT: 51 Ngày dạy: ___/__/_____ §1. GIỚI HẠN CỦA DÃY SỐ(tt) 1. Mục tiêu: (như tiết 50) 2. Chuẩn bị: a. Giáo viên: - Sách giáo khoa. - Tài liệu hướng dẫn giảng dạy toán lớp 11. b. Học sinh: - Xem cách giải và giải trước. 3. Phương pháp dạy học: - Gợi mở, vấn đáp. - Phát hiện và giải quyết vấn đề. - Thực hành giải toán 4. Tiến trình : 4.1 Ổn định tổ chức: Kiểm diện. 4.2 Kiểm tra bài cũ: Câu hỏi: - Trình bày Định nghĩa CSN lùi vô hạn, công thức tính tổng của cấp số nhân lùi vô hạn? (5đ) - Tính: (5đ). ĐS: 4.3 Giảng bài mới: Hoạt động của giáo viên và học sinh Nội dung bài học Hoạt động1: Giới hạn vô cực Mục tiêu : Tg : ĐDDH : PP : * Cách thức tiến hành : GV: Yêu cầu HS đọc và nghiên cứu và thảo luận theo hoạt động 2 theo nhóm được phân công. HS: Trả lời cssâu hỏi: a) Khi n thì un cũng lớn vô hạn: Lớn hơn bất cứ một số dương cho trước nào. b) Xét bất đẳng thức hay n > 384. 1010 GV: Thuyết trình định nghĩa về giới hạn ± ¥. GV: Yêu cầu HS đọc VD6/118 HS: Đọc GV: Phát vấn kiểm tra sự đọc hiểu của học sinh GV: Yêu cầu HS đọc một vài giới hạn đặc biệt HS: Đọc GV: Phát vấn kiểm tra sự đọc hiểu của học sinh GV: Yêu cầu HS đọc định lí 2 HS: Đọc GV: Phát vấn kiểm tra sự đọc hiểu của học sinh GV: Yêu cầu HS giải VD HS: Giải . GV: Củng cố phương pháp giải bài tập: Chia cả tử thức và mẫu thức cho n với mũ cao nhất của tử thức và mẫu thức nhằm mục đích sử dụng được dạng giới hạn: limqn = + ¥ nếu q > 1 IV. GIỚI HẠN VÔ CỰC: 1. Định nghĩa: có thể lớn hơn một số dương tuỳ ý, kể từ số hạng nào đó trở đi. 2. Một vài giới hạn đặc biệt: với k nguyên dương. nếu q>1 3. Định lý: ĐỊNH LÍ 2: a) Nếu lim un = a và lim vn = ±¥ thì b) Nếu lim un = a>0, lim vn =0 và vn >0 "n thì c) Nếu lim un = +¥ và lim vn = a > 0 thì Ví dụ: Tìm các giới hạn: a) M = lim b) N = lim c) P = lim(- n4 + 2n3 - 1 ) Giải a) M = lim (lim,lim3n = +¥) b) N = lim do lim và lim c) P = lim = - ¥ 1. Củng cố và luyện tập: - Trình bày lại các công thức đã học? 2. Hướng dẫn học sinh tự học ở nhà: - Xem l¹i bµi. - Giải các bài tập trong SGK 7, 8/122. - HD: Chia cả tử thức và mẫu thức cho n với mũ cao nhất của tử thức và mẫu thức nhằm mục đích sử dụng được dạng giới hạn: limqn = + ¥ nếu q > 1 IV. Rút kinh nghiệm: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
File đính kèm:
- DS11_Tiet 51.doc