Giáo án Bồi dưỡng học sinh giỏi Toán 9 năm học 2012-2013 - Nguyễn Văn Tú
Bài 5: (3,75đ) Cho tam giác ABC vuông cân tại A, M là trung điểm cạnh BC. Từ đỉnh M vẽ góc 450 sao cho các cạnh của góc này lần lượt cắt AB, AC tại E, F.
Chứng minh rằng:
Bài 6: (2đ) Từ một điểm A ở ngoài đường tròn (O ; R), ta kẻ hai tiếp tuyến AB và AC với đường tròn (B và C là các tiếp điểm). Gọi M là một điểm bất kỳ trên đường thẳng đi qua các trung điểm của AB và AC. Kẻ tiếp tuyến MK của đường tròn (O). Chứng minh MK = MA
CH cắt AB tại I a. Tính góc CIF. b. Chứng minh AE.AC + BF. BC không đổi khi EF di động trên nửa đường tròn. c. Tìm vị trí của EF để tứ giác ABFE có diện tích lớn nhất. Tính diện tích đó. Bài 5: (1.0 điểm) Tìm ba số nguyên tố mà tích của chúng bằng năm lần tổng của chúng. UBND HUYỆN QUẾ SƠN PHÒNG GD&ĐT KỲ THI HỌC SINH GIỎI LỚP 9 CẤP HUYỆN NĂM HỌC 2009-2010 Môn: Toán HƯỚNG DẪN CHẤM - VÒNG I Bài 1: (1.5 điểm) Thực hiện tính: với 0,75 Thay vào được: 0,75 Bài 2: (2.5 điểm) Giải các phương trình: a. . Đặt (y ³ 0) được: y2 - y - 2 = 0 0,50 Giải phương trình được: y1 = -1 (loại); y2 = 2. 0,25 Với y = 2 giải được x1 = 0; x2 = -5. 0,25 Thử lại (hoặc đối chiếu với điều kiện) kết luận nghiệm 0,25 Ghi chú: Có thể đặt y = x2 + 5x. Lúc này cần đặt điều kiện khi bình phương hai vế. b. 0,25 0,50 vô nghiệm; được x = 2. 0,25 Thử lại (hoặc đối chiếu với điều kiện) kết luận nghiệm. 0,25 Bài 3: (2.0 điểm) a.Chứng minh Phương trình (n+1)x2 + 2x - n(n+2)(n+3) = 0 luôn có nghiệm hữu tỉ với mọi số n nguyên. n =-1: Phương trình có nghiệm. Với n ¹ -1 Þ n+1¹0. D’= 1+ n(n+2)(n+3)(n+1) = 1+ (n2 + 3n)(n2+3n+2) = (n2 + 3n)2 + 2(n2 + 3n) + 1 =(n2 + 3n + 1)2. 0,50 D’³ 0 nên phương trình luôn có nghiệm. 0,25 D’ chính phương, các hệ số là số nguyên nên các nghiệm của phương trình là số hữu tỉ. 0,25 b. Gọi x1, x2 là nghiệm của phương trình x2 + 2009x + 1 = 0 x3, x4 là nghiệm của phương trình x2 + 2010x + 1 = 0 Tính giá trị của biểu thức: (x1+x3)(x2 + x3)(x1-x4)(x2-x4) Giải: Chứng tỏ hai phương trình có nghiệm. Có: x1x2 = 1 x3x4 = 1 x1+x2 = -2009 x3 + x4 = -2010 0,25 Biến đổi kết hợp thay: x1x2 = 1; x3x4 = 1 (x1+x3)(x2 + x3)(x1-x4)(x2-x4) = (x1x2 + x2x3 - x1x4 -x3x4 )(x1x2+x1x3-x2x4-x3x4) = (x2x3 - x1x4 )(x1x3-x2x4 ) = x1x2x32 - x3x4x22 - x3x4x12+x1x2x42 = x32 - x22 - x12 + x42 = (x3 + x4 )2 - 2x3x4 -( x2+ x1)2 + 2x1x2 = (x3 + x4 )2 -( x2+ x1)2 0,50 Thay x1+x2 = -2009; x3 + x4 = -2010 được : 20102 - 20092 =2010+2009 =4019 0,25 Ghi chú: Có thể nhân theo nhóm [(x1+x3)(x2 + x3)].[(x1-x4)(x2-x4)] Bài 4: ( 3.0 điểm) O A B C I D E K H M OB ^ BA; OC ^ CA ( AB, AC là các tiếp tuyến) OI ^ IA (I là trung điểm của dây DE) . Þ B, O, I, C cùng thuộc đường tròn đường kính AO. 0,75 ÐICB = ÐIAB ( Cùng chắn cung IB đường tròn đường kính AO) (1) DK // AB (Cùng vuông góc với BO) Þ Ð IDK = ÐIAB (2) Từ (1) và (2) được: Ð ICB = Ð IDK 1.0 Ð ICB = Ð IDK hay Ð ICH = Ð IDH Þ Tứ giác DCIH nội tiếp. Þ ÐHID = Ð HCD Ð HCD = Ð BED (Cùng chắn cung DB của (O)) Þ ÐHID = Ð BED Þ IH // EB Þ IH là đường trung bình của DEK Þ H là trung điểm của DK 1,25 (Mỗi bước cho 0,25 điểm) Bài 5: ( 1.0 điểm) Chứng minh A(n) = n2(n4 - 1). chia hết cho 60 với mọi số tự nhiên n. - A(n) = n.n(n2 - 1)( n2 + 1) = n.n(n - 1)(n+1)( n2 + 1). Do n(n - 1)(n+1) chia hết cho 3 nên A(n) chia hết cho 3 với mọi n. 0,25 - A(n) = n2(n4 - 1) = n(n5 - n). Do n5 - n chia hết cho 5 theo phecma nên A(n) chia hết cho 5 với mọi n. 0,25 - Nếu n chẵn Þ n2 chia hết cho 4 Þ A(n) chia hết cho 4. Nếu n lẻ Þ (n-1)(n+1) là tích hai số chẵn nên nó chia hết cho 4. Þ A(n) chia hết cho 4 với mọi n. 0,25 - Ba số 3,4,5 đôi một nguyên tố cùng nhau nên A(n) chia hết cho 3.4.5 hay A(n) chia hết cho 60. 0,25 (Mỗi bước cho 0,25 điểm) UBND HUYỆN QUẾ SƠN PHÒNG GD&ĐT KỲ THI HỌC SINH GIỎI LỚP 9 CẤP HUYỆN NĂM HỌC 2009-2010 Môn: Toán Thời gian làm bài: 150 phút (Không kể thời gian giao đề) HƯỚNG DẪN CHẤM - VÒNG II Bài 1: (2.0 điểm) a. Chứng minh bất đẳng thức: . Với là các số dương. b. Cho là hai số dương và .Tìm giá trị nhỏ nhất của ; . 0,50 0,50 P đạt giá trị nhỏ nhất tại: x = y = 0,25 hoặc: = 0,50 - đạt GTNN tại x = y = . - đạt GTNN tại x = y = . Nên M đạt GTNN tại x = y = . 0,25 Bài 2: (2.0 điểm) Giải hệ phương trình: - Đặt S = x + y; P = xy được: 0,25 - 0,25 - Giải phương trình được ; 0,25 - được ; được 0,25 - Với ; có x, y là hai nghiệm của phương trình: 0,25 - Giải phương trình được . 0,25 - Với được có x, y là hai nghiệm của phương trình: . Phương trình này vô nghiệm. 0,25 - Hệ có hai nghiệm: ; 0,25 A B C D P M N Q O H Bài 3: (2.0 điểm) -Chứng tỏ MBND là hình bình hành Þ O là trung điểm của MN. - OH // AB Þ OH ^ MN. - ÞDHMN cân tại H (Trung tuyến vừa là đường cao) Þ HM = HN. 0,75 - OH // BM được: - ON // BP được: Þ Þ NH//PM Þ Ð HNM = Ð NMP Þ Ð HMN = Ð NMP Þ MN là phân giác của góc QMP 1,25 Mỗi bước cho 0,25 điểm Bài 5: (1.0 điểm) Tìm ba số nguyên tố mà tích của chúng bằng năm lần tổng của chúng. Giải: Gọi a,b,c là ba số nguyên tố cần tìm ta có: abc = 5(a+b+c). Tích ba số nguyên tố abc chia hết cho 5 nên có một số bằng 5. 0,25 Giả sử a = 5 được 5bc = 5(5+b+c) Û bc = 5+b+c. Û bc -b - c + 1 = 6 Û (b-1)(c-1) = 6. 0,50 b,c là các số nguyên dương có vai trò như nhau nên ta có các hệ: và Kết luận: Ba số nguyên tố cần tìm là 2, 5, 7 0,25 A B E F C H I Bài 4: (3.0 điểm) O - BE, AF là hai đường cao của DABC Þ CI là đường cao thứ ba hay CI^AB - ÞTứ giác IHFB nội tiếp Þ ÐHIF = ÐHBF hay ÐCIF = ÐEBF . - DEOF đều nên ÐEOF = 600. - Þ EF = 600 Þ ÐCIF = ÐEBF = 300. 1,0 - Chứng minh DACI đồng dạng với DABE - được: - Tương tự DBCI đồng dạng với DBAE được: - Cộng được: AE.AC + BF. BC = AB.AI + AB.BI =AB(AI + IB) = AB2 = const. 1.0 - Chứng minh DABC đồng dạng với DFEC. - - Để lớn nhất Þ lớn nhất Þ CI lớn nhất. C chạy trên cung chứa góc 600 vẽ trên AB nên CI lớn nhất khi I º O Þ DCAB cân Þ EF // AB. - Lúc đó 1,0 (Mỗi bước cho 0,25 điểm) PHÒNG GD & ĐT LONG ĐIỀN KỲ THI CHỌN HỌC SINH GIỎI THCS TRƯỜNG THCS NGUYỄN TRÃI NĂM HỌC: 2009 – 2010 Môn thi: Toán Thời gian: 150 Phút Bài 1: (4điểm) Mỗi câu 2 điểm Cho a, b là 2 số tự nhiên lẻ. Chứng minh rằng: a2 – b2 chia hết cho 8 Tính tổng: Giải (0,5 điểm). Ta có: a2 – b2 = (a2 – 1) – (b2 – 1) = (a + 1)(a – 1) – (b + 1)(b – 1) (0,5 điểm). Vì (a + 1)(a – 1) là tích của 2 số tự nhiên chẵn liên tiếp nên chia hết cho 8 (0,5 điểm). Tương tự: (b +1)(b – 1) 8 (0,5 điểm). Vậy: (a2 – b2 ) 8 (đpcm) b) (0,5 điểm) (0,5 điểm) (0,5 điểm) (0,5 điểm) Bài 2: (4điểm) Mỗi câu 2 điểm Cho a, b, c là các số thực khác nhau. Chứng minh rằng: Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức: Giải a) Ta có: (0,75 điểm) (0,75 điểm) (0,5 điểm) = VP (0,25 điểm) b) Tập xác định: D = [2009; 2010] (0,25 điểm) Với "x Î D thì A ≥ 0. Do đó: A = 1. Xét: (0,25 điểm) Ta có: (vì với "x Î D) A ≥ 1 với "x Î D (0,25 điểm) Vậy: Amin = 1 khi (0,25 điểm) 2. Xét: (0,25 điểm) (vì , với "x Î D; BĐT Côsi) A2 ≤ 2 với "x Î D A với "x Î D (0,25 điểm)Vậy Amax = khi: x – 2009 = 2010 – x (0,25 điểm) x = 2009,5 Bài 3: (4 điểm) Mỗi câu 2 điểm a) Tìm nghiệm nguyên dương của phương trình: 3x + 7y = 55 b) Cho a, b, c, d là các số dương và Trục căn thức ở mẫu của biểu thức sau: Giải a) 3x + 7y = 55 (0,5 điểm). HS tìm được nghiệm nguyên tổng quát của phương trình trên: (0,5 điểm).Để: (0,5 điểm).=> t Î {16; 17; 18} (0,5 điểm).Vậy phương trình trên có 3 nghiệm nguyên dương là: (2; 7); (9; 4) ; (16; 1) b) (0,5 điểm). (0,5 điểm). (0,5 điểm) . (0,5 điểm). (vì => ad = bc => ) Bài 4 (4 điểm). Cho đường tròn tâm O đường kính AB. M là điểm nằm trên đoạn OA, vẽ đường tròn tâm O’ đường kính MB. Gọi I là trung điểm đoạn MA, vẽ dây cung CD vuông góc với AB tại I. Đường thẳng BC cắt đường tròn (O’) tại J. C J A I M D O O’ B a) Đường thẳng IJ là gì của đường tròn (O’) ? Giải thích. b) Xác định vị trí của M trên đoạn OA để diện tích tam giác IJO’ lớn nhất. Giải (h.1) Hình 1 a) Xét tứ giác ACMD, ta có : IA = IM (gt), IC = ID (vì ABCD : gt) ACMD là hình thoiAC // DM, mà ACCB (do C thuộc đường tròn đường kính AB) DMCB; MJCB (do J thuộc đường tròn đường kính MB) D, M, J thẳng hàng. Ta có : (vì ) Mà (do IC = IJ = ID : CJD vuông tại J có JI là trung tuyến) (do O’J = O’M : bán kính đường tròn (O’); và đối đỉnh) (1,5 điểm)(0,5 điểm) IJ là tiếp tuyến của (O’), J là tiếp điểm b) Ta có IA = IM IO’ = = R (R là bán kính của (O)) O’M = O’B (bán kính (O’) JIO’ vuông tại I : IJ2 + O’J2 = IO’2 = R2 Mà IJ2 + O’J2 2IJ.O’J = 4SJIO’ (1,5 điểm). Do đó SJIO’ SJIO’ = khi IJ = O’J và JIO’ vuông cân có cạnh huyền IO’ = R nên : 2O’J2 = O’I2 = R2 O’J = (0,5 điểm) Khi đó MB = 2O’M = 2O’J = R Bài 5 (4 điểm). a) Cho tam giác ABC. Hãy tìm điểm M sao cho tổng độ dài các bán kính đường tròn ngoại tiếp AMB và BCM là nhỏ nhất. b) Trong tất cả các tam giác có đáy bằng a, chiều cao bằng h, tam giác nào có bán kính đường tròn nội tiếp lớn nhất ? Giải a) (h.2) O1 R1 C B R2 O2 H M A Hình 2 Gọi O1, R1, O2, R2 lần lượt là tâm và bán kính đường tròn ngoại tiếp AMB và BCM (h.2). Xét O1AB : O1A + O1BAB 2R1AB (0,5 điểm) 2R1 = AB AB là đường kính của (O1) và giả sử đường tròn (O1) đường kính AB cắt AC tại H thì = 900 (1) (0,5 điểm)x A A1 C’ y h B a C Tương tự với O2BC : 2R2BC. Suy ra R2 nhỏ nhất BC là đường kính của (O2) và giả sử đường tròn (O2) đường kính BC cắt AC tại H’ thì = 900 (2) (1,0 điểm) Từ (1) và (2) suy ra H’H. Vậy điểm M phải tìm là chân đường cao kẻ từ đỉnh B. b) (h.3). (2,0 điểm). Lí luận đúng Hình 3 Tất cả các tam giác có đáy a, chiều cao h đều có thể sắp xếp để cạnh đáy của chúng trùng với BC = a, còn đỉnh A ở trên một đường thẳng xy // BC và cách BC một khoảng bằng h. Trong các tam giác này, ta cần tìm tam giác có bán kính đường tròn nội tiếp lớn nhất. Ta có SABC = ah Mặt khác, nếu r là bán kính của đường tròn nội tiếp thì SABC = r(AB + BC + CA) r = Do a, h, BC không đổi nên r sẽ có giá trị lớn nhất khi AB + AC có giá trị nhỏ nhất Gọi C’ là điểm đối xứng của C qua xy thì AB + AC = AB + AC’C’B Khi đó : AB + AC = C’B khi AA1ABC cân tại A. PGD& ĐT huyện Long Điền Trường THCS Trần Nguyên Hãn ĐỀ DỰ TUYỂN THI HỌC SINH GIỎI LỚP 9 CẤP HUYỆN Năm học 2009 – 2010 Thời gian 150 phút. Bài 1: (4 điểm) Cho biểu thức K = a/ Rút gọn K b/ Tìm x nguyên dương để K nhận giá trị nguyên Bài 2: (3 điểm)Cho A
File đính kèm:
- giao an toan.doc