Đề thi vào lớp 10 chuyên Lam Sơn Thanh Hoá năm học 2012 - 2013 môn thi: Toán chung

Câu 4 (3.0 điểm) : Cho đường tròn (O) có đờng kính AB cố định, M là một điểm thuộc (O) ( M khác A và B ) . Các tiếp tuyến của (O) tại A và M cắt nhau ở C. Đường tròn (I) đi qua M và tiếp xúc với đường thẳng AC tại C. CD là đờng kính của (I). Chứng minh rằng:

1. Ba điểm O, M, D thẳng hàng

2. Tam giác COD là tam giác cân

3. Đờng thẳng đi qua D và vuông góc với BC luôn đi qua một điểm cố định khi M di động trên đường tròn (O)

 

doc6 trang | Chia sẻ: tuananh27 | Lượt xem: 918 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Đề thi vào lớp 10 chuyên Lam Sơn Thanh Hoá năm học 2012 - 2013 môn thi: Toán chung, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
SỞ GIÁO DỤC ĐÀO TẠO 	KỲ THI VÀO LỚP 10 CHUYÊN LAM SƠN
 THANH HOÁ 	 NĂM HỌC 2012 - 2013
ĐỀ CHÍNH THỨC
 	 	 Môn thi : TOÁN
(Đề gồm có 01 trang)	 	(Môn chung cho tất cảc thí sinh)
Thời gian làm bài :120 phút (Không kể thời gian giao đề)
 	Ngày thi : 17 tháng 6 năm 2012
Câu 1: (2.0 điểm ) Cho biểu thức :
, (Với a > 0 , a ¹1)
1. Chứng minh rằng : 
2. Tìm giá trị của a để P = a
Câu 2 (2,0 điểm ) : Trong mặt phẳng toạ độ Oxy, cho Parabol (P) : y = x2 và đường thẳng (d) : y = 2x + 3
1. Chứng minh rằng (d) và (P) có hai điểm chung phân biệt 
2. Gọi A và B là các điểm chung của (d) và (P) . Tính diện tích tam giác OAB ( O là gốc toạ độ)
Câu 3 (2.0 điểm) : Cho phương trình : x2 + 2mx + m2 – 2m + 4 = 0
1. Giải phơng trình khi m = 4
2. Tìm m để phương trình có hai nghiệm phân biệt
Câu 4 (3.0 điểm) : Cho đường tròn (O) có đờng kính AB cố định, M là một điểm thuộc (O) ( M khác A và B ) . Các tiếp tuyến của (O) tại A và M cắt nhau ở C. Đường tròn (I) đi qua M và tiếp xúc với đường thẳng AC tại C. CD là đờng kính của (I). Chứng minh rằng:
1. Ba điểm O, M, D thẳng hàng
2. Tam giác COD là tam giác cân
3. Đờng thẳng đi qua D và vuông góc với BC luôn đi qua một điểm cố định khi M di động trên đường tròn (O)
Câu 5 (1.0 điểm) : Cho a,b,c là các số dương không âm thoả mãn : 
Chứng minh rằng : 
BÀI GIẢI
CÂU
NỘI DUNG
ĐIỂM
1
1. Chứng minh rằng : 
 (ĐPCM)
1.0
2. Tìm giá trị của a để P = a. P = a 
=> .
Ta có 1 + 1 + (-2) = 0, nên phương trình có 2 nghiệm
a1 = -1 < 0 (không thoả mãn điều kiện) - Loại
a2 = (Thoả mãn điều kiện)
Vậy a = 2 thì P = a
1.0
2
1. Chứng minh rằng (d) và (P) có hai điểm chung phân biệt
Hoành độ giao điểm đường thẳng (d) và Parabol (P) là nghiệm của phương trình
x2 = 2x + 3 => x2 – 2x – 3 = 0 có a – b + c = 0
Nên phương trình có hai nghiệm phân biệt
x1 = -1 và x2 = 
Với x1 = -1 => y1 = (-1)2 = 1 => A (-1; 1)
Với x2 = 3 => y2 = 32 = 9 => B (3; 9)
Vậy (d) và (P) có hai điểm chung phân biệt A và B
1.0
2. Gọi A và B là các điểm chung của (d) và (P) . Tính diện tích tam giác OAB ( O là gốc toạ độ)
Ta biểu diễn các điểm A và B trên mặt phẳng toạ độ Oxy như hình vẽ
Theo công thức cộng diện tích ta có:
S(ABC) = S(ABCD) - S(BCO) - S(ADO)
 = 20 – 13,5 – 0,5 = 6 (đvdt)
1.0
3
1. Khi m = 4, ta có phương trình 
x2 + 8x + 12 = 0 có D’ = 16 – 12 = 4 > 0
Vậy phương trình có hai nghiệm phân biệt
x1 = - 4 + 2 = - 2 và x2 = - 4 - 2 = - 6
1.0
2. Tìm m để phương trình có hai nghiệm phân biệt
x2 + 2mx + m2 – 2m + 4 = 0
Có D’ = m2 – (m2 – 2m + 4) = 2m – 4
Để phương trình có hai nghiệm phân biệt thì D’ > 0
=> 2m – 4 > 0 => 2(m – 2) > 0 => m – 2 > 0 => m > 2
Vậy với m > 2 thì phương trình có hai nghiệm phân biệt
1.0
4
1. Ba điểm O, M, D thẳng hàng:
Ta có MC là tiếp tuyến của đường tròn (O) Þ MC ^ MO (1)
Xét đường tròn (I) : Ta có Þ MC ^ MD (2)
Từ (1) và (2) => MO // MD Þ MO và MD trùng nhau 
Þ O, M, D thẳng hàng
1.0
2. Tam giác COD là tam giác cân
CA là tiếp tuyến của đường tròn (O) Þ CA ^AB(3)
Đờng tròn (I) tiếp xúc với AC tại C Þ CA ^ CD(4)
Từ (3) và (4) Þ CD // AB => (*)
 ( Hai góc so le trong) 
CA, CM là hai tiếp tuyến cắt nhau của (O) Þ (**)
Từ (*) và (**) Þ Þ Tam giác COD cân tại D
1.0
3. Đường thẳng đi qua D và vuông góc với BC luôn đi qua một điểm cố định khi M di động trên đờng tròn (O)
* Gọi chân đường vuông góc hạ từ D tới BC là H. Þ H Î (I) (Bài toán quỹ tích)
DH kéo dài cắt AB tại K.
Gọi N là giao điểm của CO và đường tròn (I)
=>
Ta có tứ giác NHOK nội tiếp
Vì có ( Cùng bù với góc DHN) Þ (5)
* Ta có : (Cùng chắn cung NH của đường tròn (I))
Þ DDHN DCOB (g.g)
 Mà 
 ÞDNHO DDHC (c.g.c)
Þ Mà (5) Þ, Þ NK ^ AB Þ NK // AC Þ K là trung điểm của OA cố định Þ (ĐPCM)
1.0
5
Câu 5 (1.0 điểm) : Cho a,b,c là các số dơng không âm thoả mãn : 
Chứng minh rằng : 
* C/M bổ đề: và . 
Thật vậy
(Đúng) Þ ĐPCM
Áp dụng 2 lần , ta có: 
* Ta có : , tương tự Ta có:  Þ
Ta chứng minh 
* Áp dụng Bổ đề trên ta có:
 Þ 
* Mà:
Từ (3) và (4) Þ (2)
Kết hợp (2) và (1) ta có điều phải chứng minh.
Dấu = xảy ra khi a = b = c = 1
1.0

File đính kèm:

  • docThanh Hoa 2012.doc