Đề thi tuyển sinh đại học, cao đẳng năm 2003 Môn thi: Toán khối B
Câu 1 (2 điểm). Cho hàm số y = x3 - 3x2 + m (1) ( m là tham số).
1) Tìm m để đồ thị hàm số (1) có hai điểm phân biệt đối xứng với nhau qua gốc tọa độ.
2) Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi m =2.
Bộ giáo dục và đào tạo kỳ thi tuyển sinh đại học, cao đẳng năm 2003 ----------------------- Môn thi : toán khối B Đề chính thức Thời gian làm bài: 180 phút _______________________________________________ Câu 1 (2 điểm). Cho hàm số ( là tham số). 3 23 (1)y x x m= − + m 1) Tìm để đồ thị hàm số (1) có hai điểm phân biệt đối xứng với nhau qua gốc tọa độ. m 2) Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi m =2. Câu 2 (2 điểm). 1) Giải ph−ơng trình 2otg tg 4sin 2 sin 2 x x xc x − + = . 2) Giải hệ ph−ơng trình 2 2 2 2 2 3 23 . yy x xx y += + = Câu 3 (3 điểm). 1) Trong mặt phẳng với hệ tọa độ Đêcac vuông góc Ox cho tam giác có y ABC n 0, 90 .AB AC BAC= = Biết (1; 1)M − là trung điểm cạnh BC và 2 ; 0 3 G là trọng tâm tam giác . Tìm tọa độ các đỉnh . ABC , , A B C 2) Cho hình lăng trụ đứng có đáy là một hình thoi cạnh , góc . ' ' ' 'ABCD A B C D ABCD a n 060BAD = . Gọi M là trung điểm cạnh và là trung điểm cạnh ' . Chứng minh rằng bốn điểm ' NAA CC ', , , B M D N ' cùng thuộc một mặt phẳng. Hãy tính độ dài cạnh ' theo a để tứ giác AA B MDN là hình vuông. 3) Trong không gian với hệ tọa độ Đêcac vuông góc Ox cho hai điểm và điểm sao cho . Tính khoảng cách từ trung điểm yz 0)(2; 0; 0), (0; 0; 8)A B C (0; 6;AC → = I của BC đến đ−ờng thẳng OA . Câu 4 (2 điểm). 1) Tìm giá trị lớn nhất và nhỏ nhất của hàm số 24 .y x x= + − 2) Tính tích phân π 4 2 0 1 2sin 1 sin 2 xI dx x −= +∫ . Câu 5 (1 điểm). Cho là số nguyên d−ơng. Tính tổng n 2 3 1 0 1 22 1 2 1 2 1 2 3 1 n n n n nC C C n +− − −+ + + + +" nC (C là số tổ hợp chập k của phần tử). kn n ----------------------------------Hết--------------------------------- Ghi chú: Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh.. Số báo danh
File đính kèm:
- de thi.pdf