Đề thi thử Đại học môn Toán năm học 2008-2009 trường THPT Thạch Thành I
Câu VI.a (2 điểm)
1. Trong mặt phẳng với hệ toạ độ , cho đường thẳng d: và đường tròn (C):
. Tìm toạ độ điểm M thuộc đường thẳng d mà qua đó kẻ được hai tiếp tuyến MA, MB tới (C) (A, B là các tiếp điểm) sao cho tam giác MAB đều.
2. Trong không gian với hệ toạ độ , cho hai điểm A(1;0;0), B(1;1;1) và mặt cầu (S):
. Viết phương trình mặt phẳng (P) đi qua hai điểm A,B và cắt mặt cầu (S) theo thiết diện là một hình tròn có diện tích .
TRƯỜNG THPT THẠCH THÀNH I ĐỀ DỰ BỊ ĐỀ THI MÔN TOÁN, KHỐI 12 (2008-2009) Thời gian làm bài 180 phút, không kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm) Câu I (2 điểm) Cho hàm số (1) , với là tham số thực. Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi . Xác định để hàm số (1) có ba điểm cực trị, đồng thời các điểm cực trị của đồ thị tạo thành một tam giác có diện tích bằng . Câu II (2 điểm) Giải phương trình Giải phương trình Câu III (1 điểm) Tính tích phân Câu IV (1 điểm) Cho hình chóp đều S.ABC, đáy ABC có cạnh bằng a, mặt bên tạo với đáy một góc . Tính thể tích khối chóp S.ABC và khoảng cách từ đỉnh A đến mặt phẳng (SBC) theo a. Câu V (1 điểm) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số PHẦN RIÊNG (3 điểm):Thí sinh chỉ được làm một trong hai phần (phần A hoặc B) A.Theo chương trình Chuẩn Câu VI.a (2 điểm) 1. Trong mặt phẳng với hệ toạ độ , cho đường thẳng d: và đường tròn (C): . Tìm toạ độ điểm M thuộc đường thẳng d mà qua đó kẻ được hai tiếp tuyến MA, MB tới (C) (A, B là các tiếp điểm) sao cho tam giác MAB đều. 2. Trong không gian với hệ toạ độ , cho hai điểm A(1;0;0), B(1;1;1) và mặt cầu (S): . Viết phương trình mặt phẳng (P) đi qua hai điểm A,B và cắt mặt cầu (S) theo thiết diện là một hình tròn có diện tích . Câu VII.a (1 điểm) Gọi là hai nghiệm phức của phương trình . Tính giá trị của biểu thức B.Theo chương trình Nâng cao Câu VI.b (2 điểm) Trong mặt phẳng với hệ toạ độ ,cho tam giác ABC nội tiếp đường tròn (C) có phương trình: , góc ABC bằng , A(2;0) và diện tích tam giác ABC bằng 4. Tìm toạ độ các đỉnh A, B, C. 2. Trong không gian với hệ toạ độ , cho hình chóp tứ giác đều S.ABCD, biết S(3;2;4), B(1;2;3), D(3;0;3). Gọi I là tâm mặt cầu ngoại tiếp hình chóp S.ABCD. Lập phương trình mặt phẳng chứa BI và song song với AC. Câu VII.a (1 điểm) Giải hệ phương trình ---------------------------------Hết--------------------------------- Thạch Thành, ngày 24 tháng 12 năm 2009. Người ra đề: Bùi Trí Tuấn
File đính kèm:
- De thi thu DH 24122009.doc