Đề thi thử đại học môn Toán - Đề 205

ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2012.

 Môn thi : TOÁN ( ĐỀ 205 )

Câu I. (2 điểm). Cho hàm số y=2x-1/x+1 (1).

 1) Khảo sát và vẽ đồ thị (C) của hàm số (1).

 2) Tìm điểm M thuộc đồ thị (C) để tiếp tuyến của (C) tại M với đường thẳng đi qua M và giao điểm hai đường tiệm cận có tích hệ số góc bằng - 9.

 

doc3 trang | Chia sẻ: tuananh27 | Lượt xem: 587 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Đề thi thử đại học môn Toán - Đề 205, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Equation Chapter 1 Section 1
ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2012.
 Môn thi : TOÁN ( ĐỀ 205 )
Câu I. (2 điểm).	Cho hàm số (1).
	1) Khảo sát và vẽ đồ thị (C) của hàm số (1).
	2) Tìm điểm M thuộc đồ thị (C) để tiếp tuyến của (C) tại M với đường thẳng đi qua M và giao điểm hai đường tiệm cận có tích hệ số góc bằng - 9. 
Câu II. (2 điểm) 
	1) Giải phương trình sau:	 .
	2) Giải phương trình lượng giác: .
Câu III. (1 điểm)	Tính giới hạn sau:	
Câu IV. (2 điểm)	
Cho hình nón đỉnh S có độ dài đường sinh là l, bán kính đường tròn đáy là r. Gọi I là tâm mặt cầu nội tiếp hình nón (mặt cầu bên trong hình nón, tiếp xúc với tất cả các đường sinh và đường tròn đáy của nón gọi là mặt cầu nội tiếp hình nón).
Tính theo r, l diện tích mặt cầu tâm I;
Giả sử độ dài đường sinh của nón không đổi. Với điều kiện nào của bán kính đáy thì diện tích mặt cầu tâm I đạt giá trị lớn nhất?
Câu V (1 điểm) 	Cho các số thực x, y, z thỏa mãn: x2 + y2 + z2 = 2. 
Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức:	 P = x3 + y3 + z3 – 3xyz.
Câu VI. (1 điểm)	Trong mặt phẳng tọa độ Oxy cho hình chữ nhật ABCD có tâm 
Đường thẳng AB có phương trình: x – 2y + 2 = 0, AB = 2AD và hoành độ điểm A âm. Tìm tọa độ các đỉnh của hình chữ nhật đó.
Câu VII. (1 điểm)	Giải hệ phương trình :
--------------- HẾT ---------------
HƯỚNG DẪN ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2012.
 Môn thi : TOÁN ( ĐỀ 205 )
CÂU
NỘI DUNG
ĐIỂM
I.2
+) Ta có I(- 1; 2). Gọi 
+) Hệ số góc của tiếp tuyến tại M: 
+) 
+) Giải được x0 = 0; x0 = -2. Suy ra có 2 điểm M thỏa mãn: M(0; - 3), M(- 2; 5)
1 điểm
II.1
+) ĐK: 
+) Đặt Ta có hệ: 
+) Giải hệ đx ta được x = y = 1 và 
+) Kết hợp điều kiện ta được: x = 1 và 
1 điểm
II.2
+) ĐK: 
+) Giải pt được cos24x = 1 cos8x = 1 và cos24x = -1/2 (VN)
+) Kết hợp ĐK ta được nghiệm của phương trình là 
1 điểm
III
1 điểm
IV.1
+) Gọi là bán kính mặt cầu nội tiếp nón, và cũng là bán kính đường tròn nội tiếp tam giác SAB.
Ta có: 
+) Scầu = 
1 điểm
IV.2
+) Đặt :
+) BBT: 
r
0 
y'(r)
y(r)
 ymax
+) Ta có max Scầu đạt y(r) đạt max 
1 điểm
V
+) Ta có
+) Đặt x +y + z = t, , ta được:
+) , P() = 0; ; 
+) KL: 
1 điểm
VI
+) AD = Þ AB = 2 Þ BD = 5.
+) PT đường tròn ĐK BD: (x - 1/2)2 + y2 = 25/4
+) Tọa độ A, B là nghiệm của hệ:
VII
+) ĐK: x + 2y = 6 > 0 và x + y + 2 > 0+) Lấy loga cơ số 2009 và đưa về pt: 
+) Xét và CM HS đồng biến,
từ đó suy ra x2 = y2 Û x= y, x = - y
+) Với x = y thế vào (2) và đưa về pt: 3log3(x +2) = 2log2(x + 1) = 6t
Đưa pt về dạng , cm pt này có nghiệm duy nhất t = 1 
Þ x = y =7+) Với x = - y thế vào (2) được pt: log3(y + 6) = 1 Þ y = - 3 Þ x = 3

File đính kèm:

  • docDe thi thu dai hoc SỐ 205.doc