Đề kiểm tra học kì I môn Toán lớp 9 - Đề 5

Bài 2: (2.5 đ)

Cho hàm số y = 2x – 3 (d)

a. Vẽ đồ thị hàm số (d).

b. Xác định giá trị của a để đồ thị hàm số y = ax + 3 đi qua điểm A(5; –2).

Vẽ (d’) trong trường hợp này?.

c. Tìm toạ độ giao điểm (d) và (d’)

Bài 3: (3,5 đ)

Cho tam giác ABC vuồn tại A đường cao AH. Biết AB = 9cm, BC = 15cm

a. Tính độ dài các cạnh AC, AH, BH, HC.

b. Vẽ đường tròn tâm B, bán kính BA. Tia AH cắt (B) tại D. Chứng minh: CD là tiếp tuyến của (B;BA).

c. Vẽ đường kính DE. Chứng minh: EA song song với BC.

d. Qua E vẽ tiếp tuyến d với (B). Tia CA cắt d tại F, EA cắt BF tại G. Chứng minh:

CF = CD + EF và tứ giác AHBG là hình chữ nhật

 

doc3 trang | Chia sẻ: lethuong715 | Lượt xem: 515 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Đề kiểm tra học kì I môn Toán lớp 9 - Đề 5, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
PHÒNG GD&ĐT BẢO LỘC
Họ tên: . Lớp: 
ĐỀ KIỂM TRA HỌC KÌ I – ĐỀ 5
MÔN: TOÁN 9
Thời gian: 90 phút (không kể thời gian giao đề)
I/ TRẮC NGHIỆM: (2 đ) Khoanh tròn vào chữ cái đứng trước câu trả lời đúng
1/ Biểu thức xác định với các giá trị:	
A. 	B. 	C. 	D.
2/ Giá trị biểu thức bằng:	
A.-1 	B. 1	C.	D.
3/ Hàm số nào sau đây là hàm bậc nhất
A. y = 	B. y = 	C. y = 	D. y = x2 - 1
4/ Hai đường thẳng : y = -3x + 4 và y = (m +1) x + 1 song song với nhau khi:
A. m = -2	B. m = -3	C. m = 3	D. m = -4
5/ Đồ thị hàm số y = ax + 3 đi qua điểm A(2; -1). Tìm a = ?
A. a = -2	B. a = 2	C. a = -1	D. m = 1
 6/ Cho vuông tại A, đường cao AH, biết HB = 4, HC = 16. Khi đó AH bằng:
A. 5 	B. 6 	C. 7 	D. 8
7/ Cho ABC vuông tại A, AB = 5 cm, AC = 12 cm. Bán kính đường tròn ngoại tiếp tam giác bằng
A. 169 cm	B. 13 cm	C. 12 cm	D. 6,5 cm
 8/ Cho đường tròn (O; 8 cm). Gọi M là điểm nằm ngoài đường tròn sao cho OM = 10 cm. Tính độ dài tiếp tuyến MA (A là tiếp điểm) của (O)
A. 6 cm	B. 4 cm	C. 2 cm	D. 36 cm
II. TỰ LUẬN
 Bài 1: (2đ) Thực hiện phép tính:
A = 	b. B =
Bài 2: (2.5 đ) 
Cho hàm số y = 2x – 3 (d) 
Vẽ đồ thị hàm số (d).
 Xác định giá trị của a để đồ thị hàm số y = ax + 3 đi qua điểm A(5; –2). 
Vẽ (d’) trong trường hợp này?. 
Tìm toạ độ giao điểm (d) và (d’)
Bài 3: (3,5 đ) 
Cho tam giác ABC vuồn tại A đường cao AH. Biết AB = 9cm, BC = 15cm
Tính độ dài các cạnh AC, AH, BH, HC.
Vẽ đường tròn tâm B, bán kính BA. Tia AH cắt (B) tại D. Chứng minh: CD là tiếp tuyến của (B;BA).
Vẽ đường kính DE. Chứng minh: EA song song với BC.
Qua E vẽ tiếp tuyến d với (B). Tia CA cắt d tại F, EA cắt BF tại G. Chứng minh: 
CF = CD + EF và tứ giác AHBG là hình chữ nhật
HƯỚNG DẪN CHẤM 
NĂM HỌC: 2011 - 2012
I/ TRẮC NGHIỆM (2đ): Mỗi câu đúng cho 0,25đ
1/ D	2/ C	3/ C	4/ D	5/ A	
6/D	 7/D 8/A
 II/ TỰ LUẬN (8đ):
Bài 1: (2đ) 
Thực hiện phép tính:
A = 	 
	 = 	
 = 	(1 đ)
B =
 = 	(0,5 đ)
 = 	(0,25 đ)
0
 = 	(0,25 đ)
Bài 2: (2,5 đ) 
x = 0 => y = – 3
x = 1,5 => y = 0
Đồ thị của hàm số đi qua (0; – 3) và (1,5; 0) (0,5 đ)
Hình vẽ: (0,5 đ)
Thay x = 5; y = –2 vào y = ax + 3
Ta được: –2 = a.5 + 3
 	 => a = –1	(0,25 đ)
Vậy (d’): y = –x + 3	(0,25 đ)
x = 0 => y = 3 
x = 3 => y = 0
Đồ thị của hàm số đi qua (0; 3) và (3; 0) (0,25 đ)
Hình vẽ: (0,25 đ)
Phương trình hoành độ giao điểm của (d) và (d’):
 2x – 3 = –x + 3
Vậy toạ độ giao điểm của (d) và (d’) là (2; 1) 	(0,5 đ)
Bài 3: (3,5 đ) 
Hình vẽ: (0,5 đ)
AC = 12 cm	(0,25 đ)
AH = 7,2 cm	(0,25 đ)
BH = 5,4 cm	(0,25 đ)
HC = 9,6 cm	(0,25 đ)
 và có
BC là cạnh chung
BA = BD
ABD cân tại B có BH là đường cao
Do đó = (c – g – c)
Vậy CD là tiếp tuyến của (B)	(0,5 đ)
DAE có AB là đường trung tuyến và 
Nên DAE vuông tại A
 Mặt khác 
Vậy EA // BC	(0,5 đ)
CD = CA; EF = AF (tính chất của 2 tiếp tuyến)
Vậy CF = AC +AF = CD + EF 	(0,5 đ)
 Tứ giác AHBG là hình chữ nhật vì: 	(0,5 đ)
	(HS có thể làm theo nhiều cách khác nhau)

File đính kèm:

  • docDe thi HKI toan 9 co DA.doc