Đề cương ôn tập HK I Toán 7
1.4 Mối quan hệ giữa số thập phân và số thực:
1.5 Một số quy tắc ghi nhớ khi làm bài tập
a) Quy tắc bỏ ngoặc:
Bỏ ngoặc trước ngoặc có dấu “-” thì đồng thời đổi dấu tất cả các hạng tử có trong ngoặc, còn trước ngoặc có dấu “+” thì vẫn giữ nguyên dấu các hạng tử trong ngoặc.
b/ Quy tắc chuyển vế: Khi chuyển một số hạng từ vế này sang vế kia của một đẳng thức, ta phải đổi dấu số hạng đó.
Với mọi x, y, z ÎQ : x + y = z => x = z – y
rị của a trong mỗi trường hợp sau đây. a.Biết rằng điểm Athuộc đồ thị hàm số . b. Biết rằng điểm Bthuộc đồ thị hàm số . Câu 52:Giả sử A và B là hai điểm thuộc đồ thị hàm số y = 3x + 1 a.Tung độ của điểm A bằng bao nhiêu nếu hoành độ của nó bằng b.Hoành độ của điểm B bằng bao nhiêu nếu tung độ của nó bằng -8 Câu 53 Xác định hàm số y = ax biết đồ thị của hàm số đi qua ( 3; 6 ) Bài 54: Xác định các điểm sau trên mặt phẳng tọa độ: A(-1;3) ; B(2;3) ; C(3;) ; D(0; -3); E(3;0). Bài 55: Những điểm nào sau đây thuộc đồ thị hàm số: y = -3x. A ; B ; C Dạng 2: Tính giá trị của hàm số. Câu 56. Cho hàm số y =f( x)= -5x -1. Tính f(-1), f(0), f(1), f() Bài 57. a) Cho hàm số y = f(x) = -2x + 3. Tính f(-2) ;f(-1) ; f(0) ; f(); f(). b) Cho hàm số y = g(x) = x2 – 1. Tính g(-1); g(0) ; g(1) ; g(2). III. Đường thẳng vuông góc – đường thẳng song song. 1) Lý thuyết: 1.1 Định nghĩa hai góc đối đỉnh: Hai góc đối đỉnh là hai góc mà mỗi cạnh của góc này là tia đối của một cạnh của góc kia. 1.2 Định lí về hai góc đối đỉnh: Hai góc đối đỉnh thì bằng nhau. 1.3 Hai đường thẳng vuông góc: Hai đường thẳng xx’, yy’ cắt nhau và trong các góc tạo thành có một góc vuông được gọi là hai đường thẳng vuông góc và được kí hiệu là xx’yy’. 1.4 Đường trung trực của đường thẳng: Đường thẳng vuông góc với một đoạn thẳng tại trung điểm của nó được gọi là đường trung trực của đoạn thẳng ấy. 1.5 Dấu hiệu nhận biết hai đường thẳng song song: Nếu đường thẳng c cắt hai đường thẳng a,b và trong các góc tạo thành có một cặp góc so le trong bằng nhau (hoặc một cặp góc đồng vị bằng nhau) thì a và b song song với nhau. (a // b) 1.6 Tiên đề Ơ-clit: Qua một điểm ở ngoài một đường thẳng chỉ có một đường thẳng song song với đường thẳng đó. 1.7 Tính chất hai đường thẳng song song: Nếu một đường thẳng cắt hai đường thẳng song song thì: a) Hai góc so le trong bằng nhau; b) Hai góc đồng vị bằng nhau; c) Hai góc trong cùng phía bù nhau. 2) Bài tập: Bài 58: Vẽ đoạn thẳng AB dài 2cm và đoạn thẳng BC dài 3cm rồi vẽ đường trung trực của mỗi đoạn thẳng. Bài 59: Cho hình 1 biết a//b và = 370. a) Tính . b) So sánh và . c) Tính . Bài 60: Cho hình 2: a) Vì sao a//b? b) Tính số đo góc C Hình 2 IV.Tam giác. Hình 1 1) Lý thuyết: 1.1 Tổng ba góc của tam giác: Tổng ba góc của một tam giác bằng 1800. 1.2 Mỗi góc ngoài của một tam giác bằng tổng hai góc trong không kề với nó. 1.3 Định nghĩa hai tam giác bằng nhau: Hai tam giác bằng nhau là hai tam giác có các cạnh tương ứng bằng nhau, các góc tương ứng bằng nhau. 1.4 Trường hợp bằng nhau thứ nhất của tam giác (cạnh – cạnh – cạnh). Nếu ba cạnh của tam giác này bằng ba cạnh của tam giác kia thì hai tam giác đó bằng nhau. DABC = DA’B’C’(c.c.c) 1.5 Trường hợp bằng nhau thứ hai của tam giác (cạnh – góc – cạnh). Nếu hai cạnh và góc xen giữa của tam giác này bằng hai cạnh và góc xen giữa của tam giác kia thì hai tam giác đó bằng nhau. DABC = DA’B’C’(c.g.c) 1.6 Trường hợp bằng nhau thứ ba của tam giác (góc – cạnh – góc). Nếu một cạnh và hai góc kề của tam giác này bằng một cạnh và hai góc kề của tam giác kia thì hai tam giác đó bằng nhau. DABC = DA’B’C’(g.c.g) 1.7 Trường hợp bằng nhau thứ nhất của tam giác vuông: (hai cạnh góc vuông) Nếu hai cạnh góc vuông của tam giác vuông này lần lượt bằng hai cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau. 1.8 Trường hợp bằng nhau thứ hai của tam giác vuông: (cạnh huyền - góc nhọn) Nếu cạnh huyền và góc nhọn của tam giác vuông này bằng cạnh huyền và góc nhọn của tam giác vuông kia thì hai tam giác vuông đó bằng nhau. 1.9 Trường hợp bằng nhau thứ ba của tam giác vuông: (cạnh góc vuông - góc nhọn kề) Nếu một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông này bằng một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông kia thì hai tam giác vuông đó bằng nhau. 2) Bài tập: Bài 61: Cho ABC và một tam giác có ba đỉnh H, I, K viết sự bằng nhau của hai tam giác trong các trường hợp sau: a). và AB = HI b) AB = HK và BC = IK. Bài 62: Cho ABC =DEF. Tính chu vi mỗi tam giác, biết rằng AB = 5cm, BC=7cm, DF = 6cm. Bài 63: Vẽ tam giác MNP biết MN = 2,5 cm, NP = 3cm, PM = 5cm. Bài 64: Vẽ tam giác ABC biết = 900, AB =3cm; AC = 4cm. Bài 65: Vẽ tam giác ABC biết AC = 2m , =900 , = 600. Bài 66: Cho góc xAy. Lấy điểm B trên tia Ax, điểm D trên tia Ay sao cho AB = AD. Trên tia Bx lấy điểm E, trên tia Dy lấy điểm C sao cho BE = DC. Chứng minh rằng ABC =ADE. Bài 67: Cho góc xOy khác góc bẹt. Lấy các điểm A,B thuộc tia Ox sao cho OA<OB, lấy C,D thuộc Oy sao cho OA = OB, AC = BD. Gọi E là giao điểm của AD và BC. Chứng minh rằng: a) AD = BC; b) EAB = ACD c) OE là phân giác của góc xOy. Bài 68: Cho ABC có =.Tia phân giác của góc A cắt BC tại D.Chứng minh rằng: a) ADB = ADC b) AB = AC. Bài 69: Cho góc xOy khác góc bẹt.Ot là phân giác của góc đó. Qua điểm H thuộc tia Ot, kẻ đường vuông góc với Ot, nó cắt Ox và Oy theo thứ tự là A và B. a) Chứng minh rằng OA = OB; b) Lấy điểm C thuộc tia Ot, chứng minh rằng CA = CB và =. Bµi 70: Cho gãc xOy; vÏ tia ph©n gi¸c Ot cña gãc xOy. Trªn tia Ot lÊy ®iÓm M bÊt kú; trªn c¸c tia Ox vµ Oy lÇn lît lÊy c¸c ®iÓm A vµ B sao cho OA = OB gäi H lµ giao ®iÓm cña AB vµ Ot. Chøng minh: a) MA = MB b) OM là đường trung trực của AB. c) Cho biết AB = 6cm; OA = 5 cm. Tính OH? Bài 71: Cho tam giác ABC có 3 góc đều nhọn, đường cao AH vuông góc với BC tại H. Trên tia đối của tia HA lấy điểm D sao cho HA = HD. a/ Chứng minh BC và CB lần lượt là các tia phân giác của các góc ABD và ACD. b/ Chứng minh CA = CD và BD = BA. c/ Cho góc ACB = 450.Tính góc ADC. d/ Đường cao AH phải có thêm điều kiện gì thì AB // CD. Bài 72 : Cho tam giác ABC với AB = AC. Lấy I là trung điểm BC. Trên tia BC lấy điểm N, trên tia CB lấy điểm M sao cho CN=BM. a/ Chứng minh và AI là tia phân giác góc BAC. b/ Chứng minh AM=AN. c) Chứng minh AIBC. Bài 73 : Cho tam giác ABC có góc A bằng 900. Đường thẳng AH vuông góc với BC tại .Trên đường vuông góc với BC lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD Chứng minh DAHB = DDBH Hai đường thẳng AB và DH có song song không? Vì sao Tính góc ACB biết góc BAH = 350 Bµi 74: Cho gãc x0y nhän , cã 0t lµ tia ph©n gi¸c . LÊy ®iÓm A trªn 0x , ®iÓm B trªn 0y sao cho OA = OB . VÏ ®o¹n th¼ng AB c¾t 0t t¹i M Chøng minh : Chøng minh : AM = BM c) LÊy ®iÓm H trªn tia 0t. Qua H vÏ ®ưêng th¼ng song song víi AB, ®ưêng th¼ng nµy c¾t 0x t¹i C, c¾t 0y t¹i D. Chøng minh : 0H vu«ng gãc víi CD . Bài 75 : Cho góc nhọn xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC = BD. a) Chứng minh: AD = BC. b) Gọi E là giao điểm AD và BC. Chứng minh: EAC = EBD. c) Chứng minh: OE là phân giác của góc xOy. Bài 76: Cho DABC có AB = AC. Gọi D là trung điểm của BC. Chứng minh rằng. a) DADB = DADC b) AD^BC Bài 77: Cho ABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME=MA. Chứng minh a) ABM=ECM b) AB//CE Bài 78: Chovuông ở A và AB =AC.Gọi K là trung điểm của BC. Chứng minh : AKB =AKC Chứng minh : AKBC c ) Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC //AK Bài 79: Cho ∆ ABC có AB = AC, kẻ BD ^ AC, CE ^ AB ( D thuộc AC , E thuộc AB ) . Gọi O là giao điểm của BD và CE. Chứng minh : a) BD = CE b) ∆ OEB = ∆ ODC c) AO là tia phân giác của góc BAC . Bài 80: Cho ABC. Trên tia đối của tia CB lấy điểm M sao cho CM = CB. Trên tia đối của tia CA lấy điểm D sao cho CD = CA Chứng minh ABC = DMC Chứng minh MD // AB Gọi I là một điểm nằm giữa A và B. Tia CI cắt MD tại điểm N. So sánh độ dài các đoạn thẳng BI và NM, IA và ND Bài 81: Cho tam giác ABC, M, N là trung điểm của AB và AC. Trên tia đối của tia NM xác định điểm P sao cho NP = MN. Chứng minh: CP//AB MB = CP BC = 2MN Bài 82 : Cho tam giác ABC có AB = AC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho AM = MD. a) Chứng minh ABM = DCM. b) Chứng minh AB // DC. c) Chứng minh AM BC d) Tìm điều kiện của DABC để góc ADC bằng 360 Bài 83: Cho D ABC có 3 góc nhọn. Vẽ về phía ngoài của DABC các DABK vuông tại A và DCAD vuông tại A có AB = AK ; AC = AD. Chứng minh: a) D ACK = D ABD b) KC ^ BD Bài 84: Cho tam giác ABC vuông tại A, M là trung điểm của AC. Trên tia đối của tia MB lấy điểm K sao cho MK = MB. Chứng minh: KC ^ AC AK//BC Bài 85: Cho tam giác ABC vuông tại A, AB = AC. Qua A vẽ đường thẳng d sao cho B và C nằm cùng phía đối với đường thẳng d. Kẻ BH và CK vuông góc với d. Chứng minh: AH = CK HK= BH + CK Các dạng toán thường gặp: 1/ Chứng minh 2 góc bằng nhau. 2/ Chứng minh 2 đoạn thẳng bằng nhau. 3/ Chứng minh song song. 4/ Chứng minh tia phân giác. 5/ Chứng minh vuông góc. Các cách chứng minh thường được áp dụng trong chương trình toán 7: 1/ Để chứng minh 2 góc bằng nhau: Ta thường chứng minh : + 2 góc đó là 2 góc tương ứng của 2 tam giác bằng nhau. + 2 góc đó là 2 góc so le trong, 2 góc đồng vị của 2 đường thẳng song song. 2/ Để chứng minh 2 đoạn thẳng bằng nhau: Ta thường chứng minh: Hai đoạn thẳng đó là 2 cạnh tương ứng của 2 tam giác bằng nhau. 3/ Chứng minh song song Chứng minh 2 góc so le trong bằng nhau. Chứng minh 2 góc đồng vị bằng nhau. Chứng minh 2 góc trong cùng phía bù nhau. Chứng minh cùng song song với đường thẳng thứ 3. 4/ Chứng minh tia phân giác: Chứng minh 2 góc đó bằng nhau. 5/ Chứng minh vuông góc: + Chứng minh góc tạo bởi hai đường thẳng đó bằng 900 . ( Chứng minh 2 góc bằng nhau, mà tổng 2 góc đó lại bằng 1800 => mỗi góc = 900) + Chứng minh vuông góc với 1 trong hai đường thẳng song song thì nó vuông góc với đường thẳng kia. ĐỀ THAM KHẢO Đề 1 Bài 1: (2đ) Thực hiện phép tính (Tính hợp lý): a) - + + 0,5 - b) 23. - 13: Bài 2:(1,5đ) Tìm x biết: a) 1x - = b) = Bài 3: (2 đ) : Ba đơn vị kinh doanh góp vốn theo tỉ lệ 3; 5; 7. Hỏi mỗi đơn vị sau một năm được chia bao nh
File đính kèm:
- ON TAP HOC KI I Toan 7doc.doc