Đề cương Ôn tập Chương I: Ứng dụng của đạo hàm để khảo sát và vẽ đồ thị của hàm số - Giải tích Lớp 12

• Dấu hiệu II:

 + MXĐ

 + Đạo hàm : y/ = ? . y// = ? . cho y/ = 0 ( nếu có ) => x1 , x2 . .

 + Tính y//(x1); y//(x2) .:

 Nếu y//(x0) > 0 thì hàm số đạt CT tại x0 , yCT= ?

 Nếu y//(x0) < 0 thì hàm số đạt CĐ tại x0 , yCĐ= ?

Chú ý : dấu hiệu II dùng cho những h/s mà y/ khó xét dấu

* Nếu y = f(x) là đa thức thì đường thẳng đi qua các điểm cực trị là :

y = phần dư của phép chia f(x) cho f/(x).

Dạng 2: Cực trị của hàm hữu tỉ :

 

doc17 trang | Chia sẻ: lethuong715 | Lượt xem: 688 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Đề cương Ôn tập Chương I: Ứng dụng của đạo hàm để khảo sát và vẽ đồ thị của hàm số - Giải tích Lớp 12, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
ng và ngang của đồ thị mỗi hàm số sau
1. 	;2. ; 	3. 	;	4. 
Bài 2. Tìm các đường tiệm cận của đồ thị mỗi hàm số sau
1. ;	2. ; 3. 	;	4. 
5. 	;	6. ;7. 	;	8. 
Dạng 4: Tìm GTLN – GTNN và chứng minh bất đẳng thức.
Bài 1. Chứng minh các bất đẳng thức sau:
1. với mọi x thuộc R; 2. với mọi ; 
3. Cho . Chứng minh rằng .
Bài 2. Tìm GTLN – GTNN.
1. trên đoạn 	2. trên đoạn 
3. trên đoạn 	4. trên đoạn 
5. trên đoạn 	6. trên đoạn 
7. 	trên R	8. trên R
9. trên đoạn 	10. trên đoạn 
11. trên R	12. trên R
13. trên R	14. trên R
15. trên đoạn 	16. trên đoạn 
17. trên đoạn 	18. trên R
19. trên đoạn 	20. trên R
21. trên đoạn 	22. trên đoạn 	
23. trên R	24. trên R
25. trên 
Dạng 4. Khảo sát hàm số và các vấn đề liên quan.
Loại 1. Hàm số bậc ba.
Bài 1. Cho hàm số (1)
Khảo sát hàm số.
Từ gốc toạ độ có thể kẻ được bao nhiêu tiếp tuyến của đồ thị (1). Viết phương trình các tiếp tuyến đó.
Dựa vào đồ thị (1), biện luận số nghiệm của phương trình theo m : .
Bài 2. Cho hàm số (C)
Khảo sát hàm số (C).
Viết phương trình tiếp tuyến tại điểm uốn của (C).
Viết phương trình tiếp tuyến của (C) đi qua điểm A(0; 3).
Viết phương trình tiếp tuyến của (C) biết tiếp tuyến đó song song với đường thẳng 
Bài 3. Cho hàm số .
Khảo sát hàm số khi .
Xác định m sao cho hàm số đồng biến trên tập xác định.
Xác định m sao cho hàm số có một cực đại và một cực tiểu. Tìm toạ độ của điểm cực tiểu.
Bài 4. Cho hàm số 
Khảo sát hàm số khi 
Tìm m để cắt đường thẳng tại 3 điểm phân biệt A(0; 1), B, C sao cho tiếp tuyến với tại B và C vuông góc với nhau.
Bài 5. Cho hàm số (C)
Khảo sát hàm số (C)
Một đường thẳng d qua gốc tọa độ O có hệ số góc m. Biện luận theo m số giao điểm của đường thẳng d với đồ thị (C) của hàm số.
Khi đường thẳng d tiếp xúc với (C) tại điểm A khác gốc tọa độ O, tính diện tích hình phẳng giới hạn bởi cung OA và tiếp tuyến.
Viết phương trình tiếp tuyến của (C) biết tiếp tuyến đó vuông góc với đường thẳng 
Bài 6. Cho hàm số 
Khảo sát hàm số khi .
Tìm giá trị của m để hàm số có cực đại, cực tiểu.
Viết phương trình tiếp tuyến với đồ thị (C) tại điểm 
Loại 2. Hàm số trùng phương.
Bài 1. Cho hàm số (C)
Khảo sát hàm số (C).
Viết phương trình tiếp tuyến của (C) tại điểm uốn.
Tìm các tiếp tuyến của (C) đi qua điểm .
Bài 2. Cho hàm số 
Khảo sát hàm số khi .
Biện luận theo m số cực trị của hàm số.
Xác định m sao cho cắt trục hoành tại bốn điểm có các hoành độ lập thành cấp số cộng. Xác định cấp số cộng này.
Bài 3. Cho hàm số 
Khảo sát hàm số (C) khi 
Viết phương trình tiếp tuyến của (C) tại điểm 
Tìm m để hàm số có 3 cực trị.
Bài 4. Cho hàm số 
Khảo sát hàm số (C) khi 
Tìm m để cắt trục hoành tại 4 điểm phân biệt
Bài 5. Cho hàm số với a, b là tham số
Khảo sát hàm số (C) khi 
Dựa vào đồ thị (C) biện luận số nghiệm phương trình: 
Tìm a, b để hàm số đã cho đạt cực trị bằng 4 tại .
Bài 6. Cho hàm số 
Khảo sát hàm số (C) khi 
Viết phương tình tiếp tuyến của đường cong (C) lần lượt tại các điểm và \
Tìm m để đi qua điểm N(1; 0)
Bài 7. Cho hàm số 
Khảo sát hàm số (C) khi 
Chứng minh rằng luôn đi qua hai điểm cố định A, B với mọi giá trị của m
Tìm m để tiếp tuyến tại A, B của vuông góc với nhau
Loại 3. Hàm số phân thức 
Bài 1. Cho hàm số (C)
Khảo sát hàm số (C)
Viết phương trình tiếp tuyến của đồ thị hàm số (C) tại điểm M(2; 5)
Tìm m để đường thẳng cắt (C) tại hai điểm phân biệt A, B sao cho AB có độ dài ngắn nhất.
Bài 2. Cho hàm số (C)
Khảo sát hàm số (C)
Viết phương trình đường thẳng d đi qua điểm (-1; 0) và có hệ số góc k. Biện luận theo k số giao điểm của đồ thị (C) và d
Bài 3. Cho hàm số (C)
Tìm giá trị của a, b để (C) cắt trục tung tại điểm A(0; -1) và tiếp tuyến tại A có hệ số góc bằng -3. Khảo sát hàm số với giá trị a, b vừa tìm được.
Đường thẳng d có hệ số góc m đi qua điểm B(-2; 2). Với giá trị nào của m thì d cắt (C)
Nếu d cắt (C) tại hai điểm phân biệt, hãy tìm tập hợp trung điểm của đoạn thẳng nối hai giao điểm.
Bài 4. Cho hàm số (C)
Khảo sát hàm số (C)
Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có tung độ bằng -2
Viết phương trình tiếp tuyến của đồ thị (C) biết tiếp tuyến đó đi qua điểm A(-1; 3)
Bài 5. Cho hàm số (1)
Khảo sát hàm số (1) khi 
Tìm m để đồ thị (1) tiếp xúc với đường thẳng 
CHƯƠNG II: HÀM SỐ LŨY THỪA. HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT
I – LÍ THUYẾT VÀ CÁC DẠNG BÀI TẬP
Bài toán 1: Dùng công thức tính các biểu thức có chứa hàm số mũ hoặc hàm số logarit
 a-n = ; a0 = 1 0 ; ( m; n nguyên dương , n > 1)
· Các quy tắc: 	 ax.ay = ax+y 	,(a.b)x =ax.bx ,	, , 
· Hàm số mũ : y = với a > 0 ; a ¹ 1 
TXĐ : D = R 	MGT : (0; +¥ )
+ a > 1 ; h/s đồng biến : x1 > x2 Û > 
+ 0 x2 Û < 
* Hàm số logarit: a = logaN Û aa = N logax = b Û x= ab
· Đặc biệt : = x ; log = x ; loga1 = 0 ; loga = 1 
· Các qui tắc biến đổi : với a , B , C > 0 ; a ¹ 1 ta có:
	log(B.C) = logB + logC; log = logB - logC;	log = logB
· Công thức đổi cơ số : với a , b , c > 0 ; a , c ¹ 1 ta có :
loga.logb = b Û ;	0 < a, b ¹ 1 : logb = 
Chú ý : log10x = lg x ; logx = ln x 
· Hàm số Logarit: y = logx với a > 0 ; a ¹ 1 
TXĐ : D = (0 ; +¥ )	MGT : R 
+ a > 1 ; h/s đồng biến : x1 > x2 > 0 Û logx1 > logx2 
+ 0 x2 > 0 Û logx1 <logx2 
Bài toán 2: Tính đạo hàm của các hàm số mũ và logrit
s(ex) / = ex 	-> ( eu)/ = u/.eu ; ( ax) / = ax.lna 	-> ( au)/ = u/.au.lna
(lnx) / = x Î(0;+¥)	-> (ln½u½)/ = ; (logax) / = 	-> (logau )/ = 
Bài toán3: giải phương trình mũ và logarit :
· Dạng cơ bản:
= Û f(x) = g(x) 
= 1 Û ( u -1 ).v(x) = 0 ( trong đó u có chứa biến )
= b ( với b > 0 ) Û f(x) = logb
hoặc
logf(x) = logg(x) Û; dạng: Û f(x) = 
 = b Û 
· Đặt ẩn phụ : 
a. +b. + g = 0 ; Đặt : t = Đk t > 0
 a.+b.+ g = 0 ; Đặt : t = Đk t > 0
a.+b.+ g = 0 và a.b = 1; Đặt: t = ;=
a.+b.+ g. = 0 ; Đặt t = 
· Logarit hoá hai vế :
Bài toán4: Giải bất phương trình mũ và logarit
· Dạng cơ bản :
1) > Û 
2) > b Û Nếu b £ 0 có nghiệm "x
	 Nếu b > 0 f(x) > logb nếu a > 1
	 f(x) < logb nếu 0 < a < 1 
 3) < b Û Nếu b £ 0 thì pt vô nghiệm
	 Nếu b > 0 ; f(x) 1
	 f(x) > logb nếu 0 < a < 1 
·logf(x) > logg(x) Û Đk: f(x) > 0 ; g(x) > 0 ; 0 < a ¹ 1
 (a-1)[ f(x) - g(x) ] > 0 
·logf(x) > b 	Û * Nếu a > 1 : bpt là f(x) > 
	 * Nếu 0 < a < 1 bpt là 0 < f(x) < 
·logf(x) 1 : bpt là 0 < f(x) < 	 
 * Nếu 0 
·> 1 Û u(x) > 0 và [ u(x) -1 ].và(x) > 0 
· 0 và [ u(x) -1 ].và(x) < 0 
Lưu ý: *) trong trường hợp có ẩn dưới cơ số thì chúng ta nên sử dụng công thức sau để bài toán trở nên dễ dàng hơn.
1) > ó (a-1)(f(x) - g(x)) > 0.
2) logf(x) > logg(x) ó (a-1)(f(x) - g(x)) > 0.
 *) Khi giải bài toán bất phương trình mũ hoặc logarit thì phải nắm thật vững tính chất đơn điệu của hai hàm số trên.
 *) Nắm vững phép lấy hợp, lấy giao của hai hay nhiều tập hợp số.
II- BÀI TẬP 
Bài I: 1) Giải các phương trình sau:
a)	 ; b) 
c) ; d) .
2) Giải các phương trình sau:
a) ; b) 
 c) ; d) 
e) ; g) 
 h) ; i) 
k) (D- 03) ; l) 
Bài II: 1)Giải các bất phương trình sau:
a) 	; b) 
2)Giải các bất phương trình sau:
a) 	 ;	 b) 
Bài III: 1) Giải các phương trình sau:
 a) 	; b) 
 c) 	; d) .
2) Giải các phương trình sau:
a) 	 ; b) 
 c) ; d) 
3) Giải các phương trình sau:
a) 	 ; b) 
c) 	 ; d) 
 e) 
Bài IV: 1) Giải các bất phương trình sau:
a) ; b) 
c) 	; d) 
2) Giải các bất phương trình sau:
a) ; b) 
c) ; d) 
CHƯƠNG III: NGUYÊN HÀM VÀ TÍCH PHÂN ỨNG DỤNG
I – LÍ THUYẾT VÀ CÁC DẠNG BÀI TẬP
Bài toán 1: Tìm nguyên hàm cơ bản (dựa vào bảng nguyên hàm của các hàm số cơ bản).
+ C (a ¹-1 )
 = ln½x½ + C ( x¹ 0)
= ex + C
= + C 
(a ¹-1)
 = ln½ax+ b½ + C 
eax+b + C 
=
 = Sinx + C 
 = - Cos x + C 
 == tgx
 = = -Cotgx
= Sin(ax+ b) + C = -Cos(ax+ b) + C
=tg(ax+ b) + C
= -Cotg(ax+ b) + C
Bài toán 2: Tìm nguyên hàm bằng phương pháp đổi biến số.
Dạng 1: Tính I = bằng cách đặt t = u(x)
Đặt t = u(x)
I = 
 Dạng 2: Tính I = Nếu không tính được theo dạng 1 nhưng trong tích phân có chứa một trong số các hàm biểu thức sau thì có thể đổi biến như sau: thì đặt x = asint 
 thì đặt x = atant.
Bài toán 3: Tìm nguyên hàm bằng phương pháp từng phần:
Nếu u(x) , và(x) là hai hàm số có đạo hàm liên tục trên I 
Hay ( với du = u’(x)dx, dvà = và’(x)dx)
 phân tích các hàm số dễ phát hiện u và dv
 @ Dạng 1 với f(x) là đa thức: Đặt 
 Sau đó thay vào công thức để tính
 @ Dạng 2: Đặt 
 Sau đó thay vào công thức để tính
@ Dạng 3: .Ta thực hiện từng phần hai lần với u = eax
Bài toán 4: Tìm nguyên hàm của các hàm số lượng giác (một số dạng cơ bản).
 Dạng 1: ;	; .
 * Thực hiện công thức biến đổi tích thành tổng rồi tính tích phân.
 Dạng 2: (n,m là các số nguyên dương)
 *) Nếu n lẻ, m chẵn thì đặt t = cosax.
 *) nếu m lẻ, n chẵn thì đặt t = sinax.
 *) Nếu n,m đều chẵn thì : Dùng công thức nhân đôi sau đó dung tiếp công thức hạ bậc để tính. (nếu một trong 2 số n hoặc n = 0 số còn lại là số chẵn thì ta chỉ dung công thức hạ bậc).
 *) n,m Î Z nếu n+m là số nguyên chẵn thì có thể đặt t = tanax hoặc t = cotax.
 Dạng 3: R là hàm số hữu tỷ. (mở rộng thi đại học).
*) Nếu R(sinx, cosx) lẻ đối với sinx tức là R(-sinx, cosx) = -R(sinx, cosx)thì ta đặt t = cosx.
*) Nếu R(sinx, cosx) lẻ đối với cosx tức là R(sinx, -cosx) = -R(sinx, cosx)thì ta đặt t = sinx.
*) Nếu R(sinx, cosx) chẵn đối với sinx và cosx tức là R(-sinx,- cosx) = R(sinx, cosx)thì ta đặt t = tanx.
Bài toán 5: Tìm nguyên hàm của các hàm số hữu tỷ
 Yêu cầu tính trong đó f(x), g(x) là các đa thức theo x.
Trường hợp 1: Bậc của f(x)³ Bậc của g(x) thì thực hiện phép chia đa thức f(x) cho g(x) ta dẫn đến: . Trong đó h(x) (thương của phép chia) là một đa thức còn r(x) (phần dư của phép chia) là một đa thức có bậc nhỏ hơn bậc của g(x).Nên .Như vàậy ta tích được bằng bảng nguyên hàm vì vàậy ta chỉ còn phải tính theo trường hợp sau.
Trường hợp 2: tính với bậc r(x) nhỏ hơn bậc g(x).
 *) Phân tích mẫu số g(x) thành tích của các nhị thức.
 *) Dùng cách đồng nhất thức như sau: chắn hạn:(*) 
( x1

File đính kèm:

  • docde cuong.doc