Đáp án Đề thi tuyển sinh Đại học, Cao đẳng môn Toán khối A năm 2004
+ Đường thẳng qua O, vuông góc với BA( 3; 3)
JJJG
có phương trình 3x 3y 0 + = .
Đường thẳng qua B, vuông góc với OA(0; 2)
JJJG
có phương trình y = −1
( Đường thẳng qua A, vuông góc với BO( 3; 1)
JJJG
có phương trình 3x y 2 0 + − = )
0,25
Giải hệ hai (trong ba) phương trình trên ta được trực tâm H( 3; 1) − 0,25
+ Đường trung trực cạnh OA có phương trình y = 1.
Đường trung trực cạnh OB có phương trình 3x y 2 0 + + = .
( Đường trung trực cạnh AB có phương trình 3x 3y 0 + = ).
0,253
Giải hệ hai (trong ba) phương trình trên ta được tâm đường tròn ngoại tiếp tam giác
OAB là I 3 ; 1 ( ) − . 0,2
1 Bé gi¸o dôc vµ ®µo t¹o §¸p ¸n - Thang ®iÓm ..................... ®Ò thi tuyÓn sinh ®¹i häc, cao ®¼ng n¨m 2004 ........................................... §Ò chÝnh thøc M«n: To¸n, Khèi A (§¸p ¸n - thang ®iÓm cã 4 trang) C©u ý Néi dung §iÓm I 2,0 I.1 (1,0 ®iÓm) ( )12 332 − −+− = x xxy = ( ) 1 1x 1 2 2 x 1 − + − − . a) TËp x¸c ®Þnh: { }R \ 1 . b) Sù biÕn thiªn: 2 x(2 x)y ' 2(x 1) − = − ; y ' 0 x 0, x 2= ⇔ = = . 0,25 yC§ = y(2) = 1 2 − , yCT = y(0) = 3 2 . §−êng th¼ng x = 1 lµ tiÖm cËn ®øng. §−êng th¼ng 1y x 1 2 = − + lµ tiÖm cËn xiªn. 0,25 B¶ng biÕn thiªn: x −∞ 0 1 2 +∞ y' − 0 + + 0 − y +∞ +∞ 1 2 − 3 2 −∞ −∞ 0,25 c) §å thÞ: 0,25 2 I.2 (1,0 ®iÓm) Ph−¬ng tr×nh hoµnh ®é giao ®iÓm cña ®å thÞ hµm sè víi ®−êng th¼ng y = m lµ : ( ) mx xx = − −+− 12 332 ⇔ ( ) 023322 =−+−+ mxmx (*). 0,25 Ph−¬ng tr×nh (*) cã hai nghiÖm ph©n biÖt khi vµ chØ khi: 0>∆ ⇔ 24m 4m 3 0− − > ⇔ 3m 2 > hoÆc 1m 2 < − (**) . 0,25 Víi ®iÒu kiÖn (**), ®−êng th¼ng y = m c¾t ®å thÞ hµm sè t¹i hai ®iÓm A, B cã hoµnh ®é x1 , x2 lµ nghiÖm cña ph−¬ng tr×nh (*). AB = 1 ⇔ 121 =− xx ⇔ 2 1 2x x 1− = ⇔ ( )1 2 2 1 2x x 4x x 1+ − = 0,25 ⇔ ( ) ( ) 123432 2 =−−− mm ⇔ 1 5m 2 ± = (tho¶ m·n (**)) 0,25 II 2,0 II.1 (1,0 ®iÓm) §iÒu kiÖn : x 4≥ . 0,25 BÊt ph−¬ng tr×nh ®· cho t−¬ng ®−¬ng víi bÊt ph−¬ng tr×nh: 2 22(x 16) x 3 7 x 2(x 16) 10 2x− + − > − ⇔ − > − 0,25 + NÕu x > 5 th× bÊt ph−¬ng tr×nh ®−îc tho¶ m·n, v× vÕ tr¸i d−¬ng, vÕ ph¶i ©m. 0,25 + NÕu 4 x 5≤ ≤ th× hai vÕ cña bÊt ph−¬ng tr×nh kh«ng ©m. B×nh ph−¬ng hai vÕ ta ®−îc: ( ) ( )22 22 x 16 10 2x x 20x 66 0− > − ⇔ − + < 10 34 x 10 34⇔ − < < + . KÕt hîp víi ®iÒu kiÖn 4 x 5≤ ≤ ta cã: 10 34 x 5− − 0,25 II.2 (1,0 ®iÓm) §iÒu kiÖn: y > x vµ y > 0. ( ) 11loglog 4 4 1 =−− y xy ⇔ ( ) 11loglog 44 =−−− yxy 0,25 ⇔ 4 y xlog 1 y − − = ⇔ 4 3yx = . 0,25 ThÕ vµo ph−¬ng tr×nh x2 + y2 = 25 ta cã: 2 23y y 25 y 4. 4 ⎛ ⎞ + = ⇔ = ±⎜ ⎟⎝ ⎠ 0,25 So s¸nh víi ®iÒu kiÖn , ta ®−îc y = 4, suy ra x= 3 (tháa m·n y > x). VËy nghiÖm cña hÖ ph−¬ng tr×nh lµ (3; 4). 0,25 III 3,0 III.1 (1,0 ®iÓm) + §−êng th¼ng qua O, vu«ng gãc víi BA( 3 ; 3) JJJG cã ph−¬ng tr×nh 3x 3y 0+ = . §−êng th¼ng qua B, vu«ng gãc víi OA(0; 2) JJJG cã ph−¬ng tr×nh y = 1− ( §−êng th¼ng qua A, vu«ng gãc víi BO( 3 ; 1) JJJG cã ph−¬ng tr×nh 3x y 2 0+ − = ) 0,25 Gi¶i hÖ hai (trong ba) ph−¬ng tr×nh trªn ta ®−îc trùc t©m H( 3 ; 1)− 0,25 + §−êng trung trùc c¹nh OA cã ph−¬ng tr×nh y = 1. §−êng trung trùc c¹nh OB cã ph−¬ng tr×nh 3x y 2 0+ + = . ( §−êng trung trùc c¹nh AB cã ph−¬ng tr×nh 3x 3y 0+ = ). 0,25 3 Gi¶i hÖ hai (trong ba) ph−¬ng tr×nh trªn ta ®−îc t©m ®−êng trßn ngo¹i tiÕp tam gi¸c OAB lµ ( )I 3 ; 1− . 0,25 III.2.a (1,0 ®iÓm) + Ta cã: ( )C 2; 0; 0− , ( )D 0; 1; 0− , ( )2;0;1−M , ( )22;0;2 −=SA , ( )BM 1; 1; 2= − −JJJJG . 0,25 Gäi α lµ gãc gi÷a SA vµ BM. Ta ®−îc: ( ) SA.BM 3cos cos SA, BM 2SA . BMα = = = JJJG JJJJG JJJG JJJJG JJJG JJJJG ⇒ 30α = ° . 0,25 + Ta cã: ( )SA, BM 2 2; 0; 2⎡ ⎤ = − −⎣ ⎦JJJG JJJJG , ( )AB 2; 1; 0= −JJJG . 0,25 VËy: ( ) SA, BM AB 2 6d SA, BM 3SA, BM ⎡ ⎤ ⋅⎣ ⎦ = =⎡ ⎤⎣ ⎦ JJJG JJJJG JJJG JJJG JJJJG 0,25 III.2.b (1,0 ®iÓm) Ta cã MN // AB // CD ⇒ N lµ trung ®iÓm SD ⇒ ⎟⎠ ⎞⎜⎝ ⎛ − 2; 2 1 ;0N . 0,25 ( )SA 2; 0; 2 2= −JJJG , ( )2;0;1 −−=SM , ( )22;1;0 −=SB , 1SN 0; ; 22⎛ ⎞= − −⎜ ⎟⎝ ⎠ JJJG ( )SA, SM 0; 4 2; 0⎡ ⎤⇒ =⎣ ⎦JJJG JJJG . 0,25 S.ABM 1 2 2V SA,SM SB 6 3 ⎡ ⎤= ⋅ =⎣ ⎦ JJJG JJJG JJG 0,25 S.AMN 1 2V SA,SM SN 6 3 ⎡ ⎤= ⋅ =⎣ ⎦ JJJG JJJG JJJG ⇒ S.ABMN S.ABM S.AMNV V V 2= + = 0,25 IV 2,0 IV.1 (1,0 ®iÓm) 2 1 xI dx 1 x 1 = + −∫ . §Æt: 1−= xt ⇒ 12 += tx ⇒ tdtdx 2= . 01 =⇒= tx , 12 =⇒= tx . 0,25 4 Ta cã: 1 1 12 3 2 0 0 0 t 1 t t 2I 2t dt 2 dt 2 t t 2 dt 1 t 1 t t 1 + + ⎛ ⎞ = = = − + −⎜ ⎟+ + +⎝ ⎠∫ ∫ ∫ 0,25 I 1 3 2 0 1 12 t t 2t 2 ln t 1 3 2 ⎡ ⎤ = − + − +⎢ ⎥⎣ ⎦ 0,25 1 1 11I 2 2 2ln 2 4ln 2 3 2 3 ⎡ ⎤ = − + − = −⎢ ⎥⎣ ⎦ . 0,25 IV.2 (1, 0 ®iÓm) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 8 2 3 42 0 1 2 2 4 3 6 4 8 8 8 8 8 8 5 6 7 85 10 6 12 7 14 8 16 8 8 8 8 1 x 1 x C C x 1 x C x 1 x C x 1 x C x 1 x C x 1 x C x 1 x C x 1 x C x 1 x ⎡ ⎤+ − = + − + − + − + −⎣ ⎦ + − + − + − + − 0,25 BËc cña x trong 3 sè h¹ng ®Çu nhá h¬n 8, bËc cña x trong 4 sè h¹ng cuèi lín h¬n 8. 0,25 VËy x8 chØ cã trong c¸c sè h¹ng thø t−, thø n¨m, víi hÖ sè t−¬ng øng lµ: 3 2 4 08 3 8 4C .C , C .C 0,25 Suy ra a8 168 70 238= + = . 0,25 V 1,0 Gäi 3cos22cos222cos −++= CBAM 3 2 cos 2 cos2221cos2 2 − − ⋅ + ⋅+−= CBCBA . 0,25 Do 0 2 sin > A , 1 2 cos ≤− CB nªn 2 AM 2cos A 4 2 sin 4 2 ≤ + − . 0,25 MÆt kh¸c tam gi¸c ABC kh«ng tï nªn 0cos ≥A , AA coscos2 ≤ . Suy ra: 4 2 sin24cos2 −+≤ AAM 4 2 sin24 2 sin212 2 −+⎟⎠ ⎞⎜⎝ ⎛ −= AA 2 2 sin24 2 sin4 2 −+−= AA 01 2 sin22 2 ≤⎟⎠ ⎞⎜⎝ ⎛ −−= A . VËy 0≤M . 0,25 Theo gi¶ thiÕt: M = 0 ⇔ ⎪⎪ ⎪ ⎩ ⎪⎪ ⎪ ⎨ ⎧ = = − = 2 1 2 sin 1 2 cos coscos2 A CB AA ⇔ A 90 B C 45 = °⎧⎨ = = °⋅⎩ 0,25
File đính kèm:
- DA_Toan_A_Nam2004.pdf