Công thức và bài tập Toán liên quan đến bất đẳng thức

I : CÁC KIẾN THỨC CẦN LƯU Ý

1, Định nghĩa bất đẳng thức

 + a nhỏ hơn b , kí hiệu a < b

 + a lớn hơn b , kí hiệu a > b ,

 + a nhỏ hơn hoặc bằng b , kí hiệu a < b,

 + a lớn hơn hoặc bằng b , kí hiệu a > b ,

2, Một số tính chất cơ bản của bất dẳng thức :

 a, Tính chất 1: a > b <=> b < a

 b, Tính chất 2: a > b và b > c => a > c

 

 

c, Tính chất 3: a > b <=> a + c > b + c

 Hệ quả : a > b <=> a - c > b - c

 a + c > b <=> a > b - c

 d, Tính chất 4 : a > c và b > d => a + c > b + d

 a > b và c < d => a - c > b - d

 e, Tính chất 5 : a > b và c > 0 => ac > bd

 a > b và c < 0 => ac < bd

 f, Tính chất 6 : a > b > 0 ; c > d > 0 => ac > bd

 g, Tính chất 7 : a > b > 0 => an > bn

 a > b <=> an > bn với n lẻ .

 h, Tính chất 8 : a > b ; ab > 0 =>

3, Một số bất đẳng thức thông dụng :

 a, Bất đẳng thức Côsi :

 

doc25 trang | Chia sẻ: lethuong715 | Lượt xem: 641 | Lượt tải: 0download
Bạn đang xem trước 20 trang mẫu tài liệu Công thức và bài tập Toán liên quan đến bất đẳng thức, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
 
 ú x2 + y2 2 (2)
 Từ (1) và (2) ta có : x4 + y4 2
 Dấu '' = '' xảy ra khi x = y = 1 .
Bài 4.2:
 Cho 0 < a, b, c, d < 1 . Chứng minh rằng : 
 (1 - a)(1 - b)(1 - c)(1 - d) > 1 - a - b - c - d .
 Giải : 
 Ta có : (1 - a)(1 - b) = 1 - a - b + ab
 Do a, b > 0 nên ab > 0 => (1 - a)(1 - b) > 1 - a - b .
 Do c 0 => (1 - a)(1 - b)(1 - c) > (1 - a - b)(1 - c) 
 ú (1 - a)(1 - b)(1 - c) > 1 - a - b - c + ac + bc .
 Do a, b, c, d > 0 nên 1 - d > 0 ; ac + bc > 0 ; ad + bd + cd > 0 
 =>(1 - a)(1 - b)(1 - c) > 1 - a - b - c 
 => (1 - a)(1 - b)(1 - c)(1 - d) > (1 - a - b - c)(1 - d)
 => (1 - a)(1 - b)(1 - c)(1 - d) > 1 - a - b - c - d + ad + bd + cd
 => (1 - a)(1 - b)(1 - c)(1 - d) > 1 - a - b - c - d .
Bài 4.3 : Cho 0 < a, b, c < 1 . Chứng minh rằng :
 2a3 + 2b3 + 2c3 < 3 + a2b + b2c + c2a 
Giải :
 Do a, b a3 < a2 < a < 1 ; b3 < b2 < b < 1 ; ta có : 
 (1 - a2)(1 - b) > 0 => 1 + a2b > a2 + b 
 => 1 + a2b > a3 + b3 hay a3 + b3 < 1 + a2b .
 Tương tự : b3 + c3 < 1 + b2c ; c3 + a3 < 1 + c2a .
 => 2a3 + 2b3 + 2c3 < 3 + a2b + b2c + c2a 
5.phương pháp 5 : Dùng bất đẳng thức tổng quát chứa luỹ thừa các số tự nhiên 
Bài 5.1: Cho a>b>0 CMR: 
 >
 Giải :
Để chứng minh bất đẳng thức trên , ta chứng minh bất đẳng thức trung gian sau nếu a>b>0 và m,n là hai số tự nhiên mà m>n thì (1)
 Thật vậy ta dùng phép biến đổi tương đương để chứng minh 
 (1) 
 1-
 (2)
Bất đẳng thức (2) luôn đúng vì a>b>0 nên và m>n vậy bất đẳng thức (1) luôn đúng 
áp dụng bất đẳng thức trung gian vối a>b>0 và m>n nên khi m=1996, n=1995 thì bất đẳng thức phảI chứng minh luôn đúng >
6. phương pháp 6: Dùng bất đẳng thức về 3 cạnh của tam giác 
 a , b, c, là độ dài ba cạnh của tam giác a<b+c (1)
 b < a+c (2)
 c< a+b (3)
Từ 3 bất đẳng thức về tổng ba cạnh của tam giác ta suy ra được 3 bất đẳng thức về hiệu hai cạnh 
 a<b+c (1)(4)
 b < a+c (2)(5)
 c< a+b (3)(6)
Bài 6.1: 
Cho tam giác ABC có chu vi 2p = a + b + c (a, b , c là độ dài các cạnh của tam giác ) . Chứng minh rằng : 
Giải:
 Ta có : p - a = 
 Tương tự : p - b > 0 ; p - c > 0 ; 
 áp dụng kết quả bài tập (3.5) , ta được ; 
 Tương tự : 
 => 
 => điều phải chứng minh .
 Dấu '' = '' xảy ra khi : p - a = p - b = p - c ú a = b = c .
 Khi đó tam giác ABC là tam giác đều .
Bài 6.2: 
Cho a, b, c , là độ dài ba cạnh của một tam giác CMR: 
(a+b-c)(b+c-a)(c+a-b) abc
Giải:
 Bất đẳng thức về ba cạnh của tam giác cho ta viết 
 Từ đó 
 (a+b-c)(a-b+c)(b-c+a)(b+c-a)(c-a+b)(c+a-b)
(a+b-c)2(b+c-a)2(c+a-b)2
(a+b-c)(b+c-a)(c+a-b)abc
Vì a, b, c, là ba cạnh của một tam giác nên 
 a+b-c>0
 b+c-a>0
 c+a-b>0 và abc>0
 Vậy bất đẳng thức dẫ được chứng minh 
 7. Phương pháp 7 : Chứng minh phản chứng .
- Kiến thức : Giả sử phải chứng minh bất đẳng thức nào đó đúng , ta hãy giả sử bất dẳng thức đó sai , sau đó vận dụng các kiến thức đã biết và giả thiết của đề bài để suy ra điều vô lý .
	 Điều vô lý có thể là trái với giả thiết , hoặc là những điều trái nhược nhau , từ đó suy ra đẳng thức cần chứng minh là đúng .
	Một số hình thức chứng minh bất đẳng thức :
	 + Dùng mệnh đề đảo 
	 + Phủ định rồi suy ra điều trái với giả thiết .
	 + Phủ định rồi suy ra trái với đIều đúng .
	 + Phủ định rồi suy ra hai đIều tràI ngược nhau .
	 + Phủ định rồi suy ra kết luận .
Các ví dụ : 
Bài 7. 1 : 
Cho 0 1
 3b(1 - c) > 2
 8c(1 - d) > 1
 32d(1 - a) > 3
Giải:
	Giả sử ngược lại cả bốn đẳng thức đều đúng . Nhân từng về ;
 ta có : 2.3.8.32a(1 - b)b(1 - c)c(1 - d)d(1 - a) > 2 .3
 	=> (1)
 Mặt khác , áp dụng bất đẳng thức Côsi ta có :
 => a(1 - a) 
 Tương tự : b(1 - b) 
 c(1 - c) 
 d(1 - d) 
 Nhân từng về các bất đẳng thức ; ta có :
 (2)
 Từ (1) và (2) suy ra vô lý .
 Điều vô lý đó chứng tỏ ít nhất một trong 4 bất đẳng thức cho trong đầu bài là sai .
Bài 7.2 : 
( Phủ định rồi suy ra hai điều trái ngược nhau ) 
 Chứng minh rằng không có 3 số dương a, b, c nào thoả mãn cả ba bất đẳng thức sau : ; ; 
 Giải 
 Giả sử tồn tại 3 số dương a, b, c thoả mãn cả 3 bất đẳng thức : 
 ; ; 
	Cộng theo từng vế của 3 bất đẳng thức trên ta được : 
 ú (1)
 Vì a, b, c > 0 nên ta có : ; ; 
 => Điều này mâu thuẫn với (1)
	Vậy không tồn tại 3 số dương a, b, c thoả mãn cả 3 bất đẳng thức nói trên . => đpcm 
Bài 7.3 :
 Chứng minh rằng không có các số dương a, b, c thoả mãn cả 3 bất đẳng thức sau : 
 	 4a(1 - b) > 1 ; 4b(1 - c) > 1 ; 4c(1 - a ) > 1 .
Hướng dẫn : tương tự như bài 2 : 
Bài 7.4 :
( Phủ định rồi suy ra trái với điều đúng )
 	Cho a3 + b3 = 2 . Chứng minh rằng : a + b 2 .
Giải : 
 Giả sử : a + b > 2 => (a + b )3 > 8 
 => a3 + b3 + 3ab(a + b) > 8 
 => 2 + 3ab(a + b) > 8 ( Vì : a3 + b3 = 2 ) 
 => ab(a + b) > 2 
 => ab(a + b) > a3 + b3 ( Vì : a3 + b3 = 2 ) 
 Chia cả hai vế cho số dương a, b ta được : 
 ab > a2 - ab + b2 => 0 > (a - b)2 Vô lý 
	 Vậy : a + b 2 
 8. Phương pháp 8 : Đổi biến số 
	- Kiến thức : Thực hiện phương pháp đổi biến số nhằm đưa bài toán đã cho về dạng đơn giản hơn , gọn hơn , dạng những bài toán đã biết cách giải ... 
Các ví dụ : 
Bài 8. 1 :
 Chứng minh rằng : Nếu a , b , c > 0 thì : 
 Giải: 
 Đặt : b +c = x , c + a = y , a + b = z 
 => a + b + c = 
 => a = , b = , c = 
 Khi đó : 
 VT = = 
 = 
Bài 8.2 :
 Chứng minh rằng ; với mọi số thực x, y ta có bất đẳng thức : 
 	- 
 Giải:
	Đặt : a = và b = 
 => ab = 
	Ta có dễ thấy với mọi a, b thì : - 
 	Mà : (a - b)2 = 
 (a + b)2 = 
 Suy ra : - ab .
Bài 8.3 :
 Cho a, b, c > 0 ; a + b + c 1 . Chứng minh rằng : 
Giải : 
	Đặt : a2 + 2bc = x ; b2 + 2ca = y ; c2 + 2ab = z 
 Khi đó : x + y + z = a2 + 2bc + b2 + 2ca + c2 + 2ab 
 = (a + b + c)2 1
	Bài toán trở thành : Cho x, y, z > 0 , x + y + z 1 .
	Cứng minh rằng : 
 	Ta chứng minh được : (x + y + z)( 
	Theo bất đẳng thức Côsi 
 Mà : x + y + z 1 nên suy ra .
9.Phương pháp 9: Dùng phép quy nạp toán học .
	- Kiến thức : Để chứng minh một bất đẳng thức đúng với n > 1 bằng phương pháp quy nạp toán học , ta tiến hành : 
	+ Kiểm tra bất đẳng thức đúng với n = 1 (n = n0)
	+ Giả sử bất đẳng thức đúng với n = k > 1 (k > n0)
	+ Chứng minh bất đẳng thức đúng với n = k + 1 
	+ Kết luận bất đẳng thức đúng với n > 1 (n > n0) 
	- Ví dụ : 
Bài 9.1 : 
 Chứng minh rằng với mọi số nguyên dương n 3 thì 
 2n > 2n + 1 (*)
 Giải : 
 + Với n = 3 , ta có : 2n = 23 = 8 ; 2n + 1 = 2.3 + 1 = 7 ; 8 > 7 . Vậy đẳng thức (*) đúng với n = 3 .
 + Giả sử (*) đúng với n = k (k N ; k 3) , tức là : 2k > 2k + 1 
 ta phải chứng minh : 2k+1 > 2(k + 1) + 1 
 hay : 2k+1 > 2k + 3 (**) 
 + Thật vậy : 2k+1 = 2.2k , mà 2k > 2k + 1 ( theo giả thiết quy nạp ) 
do đó : 2k +1 > 2(2k + 1) = (2k + 3) +(2k - 1) > 2k + 3 ( Vì : 2k - 1 > 0) 
 Vậy (**) đúng với mọi k 3 .
 + Kết luận : 2n > 2n + 1 với mọi số nguyên dương n 3 .
Bài 9.2 :.
Chứng minh rằng : 
 ..... (*) (n là số nguyên dương ) 
 Giải : 
 + Với n = 1 , ta có : VT = VP = . Vậy (*) đúng với n = 1 .
 + Giả sử (*) đúng với n = k 1 ta có : ..... 
 Ta cần chứng minh (*) đúng với n = k + 1 , tức là : 
 ..... . .
 do đó chỉ cần chứng minh : 
 dùng phép biến đổi tương đương , ta có : 
 (2k + 1)2(3k + 4) (3k + 1)4(k +1)2 
 ú 12k3 + 28k2 + 19k + 4 12k3 + 28k2 + 20k +4
 ú k 0 . => (**) đúng với mọi k 1 .
 Vậy (*) dúng với mọi số nguyên dương n .
10. Phương pháp 10 : Chứng minh bất đẳng thức trong hình học phẳng 
Bài 10.1 :CMR trong một tam giác nhọn thì tổng các trung tuyến của nó lớn hơn 4lần bán kính đường tròn ngoại tiếp 
Giải: 
Gọi ma, mb, mc là độ dài ba đường trung tuyến và R là bán kính đường tròn ngoại tiếp ABC, ta phải chứng minh ma+ mb+mc>4R 
Vì ABC là một tam giác nhọn nên tâm đường tròn ngoại tiếp tam giác nằm trong tam giác ABCnếu G là trọng tâm tam giác ABC thì tâm 0 nằm ở một trong ba tam giác tam giác GAB, tam giác GAC ,tam giác GBC . Giả sử tâm 0
 nằm trong tam giác GAB thì 0A +0B=2R và GA+ GB > 2R mà GA=AA1=ma ,GB=BB1 =mb
Nên GA+GB > 2R (ma+mb) >2R ma+mb >3R 
Mà trong tam giác 0CC1 có CC1 >0C mc >R 
Do đó ma+ mb+ mc > 3R+R=4R .
Vậy ma+mb+ mc >4R 
Bài 10. 2: Một đường tròn tiếp xúc với hai cạnh của một tam giác vuông đỉnh A tại hai điểm B và C , kẻ một tiếp tuyến với đường tròn cắt các cạnh AB và AC tại M và N , chứng minh rằng MB+NC<
Giải
 Gọi I là tiếp điểm của tiếp tuyến MN với đường tròn tâm 0 tính chất tiếp tuyên cho ta 
 MB=MI ,NC=NI 
Từ đó MN=MB+NC nhưng tam giác vuông AMN thì MN< AM+AN 
 Nên 2MN < AM+AN +BM+ CN =AB +AC 
MN< 
Ngoài ra trong tam giác vuông AMN ta cũng có cạnh huyền MN>AM và MN> AN 2MN > AM+AN 
Vì MN=BC+CN 
Nên 3MN > AM+AN +BM+CN do đó 3MN > AB+AC MN >
Vậy MB+NC<
 11 . Ngoài ra còn có một số phương pháp khác để chứng minh bất đẳng thức như : Phương pháp làm trội , tam thức bậc hai ... ta phải căn cứ vào đặc thù của mỗi bài toán mà sử dụng phương pháp cho phù hợp . Trong phạm vi nhỏ của đề tài này không hệ thống ra những phương pháp đó .
 iii : ứng dụng của bất đẳng thức 
1- Dùng bất đẳng thức để tìm cực trị .
	- Kiến thức : Nếu f(x) m thì f(x) có giá trị nhỏ nhất là m .
	 Nếu f(x) M thì f(x) có giá trị lớn nhất là M .
 Ta thường hay áp dụng các bất đẳng thức thông dụng như : Côsi , Bunhiacôpxki , bất đẳng thức chứa dấu giá trị tuyệt đối .
 Kiểm tra trường hợp xảy ra dấu đẳng thức để tìm cực trị .
 Tìm cực trị của một biểu thức có dạng là đa thức , ta hay sử dụng phương pháp biến đổi tương đương , đổi biến số , một số bất đẳng thức ...
 Tìm cực trị của một biểu thức có chứa dấu giá trị tuyệt đối , ta vận dụng các bất đẳng thức chứa dấu giá trị tuyệt đối 
 Chú ý : 
 Xảy ra dấu '' = '' khi AB 0 
 Dấu ''= '' xảy ra khi A = 0 
Bài 1 : Tìm giá trị nhỏ nhất của biểu thức : B = a3 + b3 + ab ; Cho biết a và b thoả mãn : a + b = 1 .
Giải
 B =

File đính kèm:

  • dochsf.doc
Giáo án liên quan