Chuyên đề luyện thi Đại học Giải tích - Sự tương giao của hai đồ thị hàm số - Nguyễn Lương Thành
Bài 6) Cho hàm số y = (x -1)(x2 + mx + m). Tìm m để đồ thị hàm số cắt trục hoành tại ba điểm phân biệt.
Bài 7) Cho hàm số y = 2x3 - 3x2 -1. Gọi d là đường thẳng đi qua điểm M(0; -1) và có hệ số góc bằng k.
Tìm k để đường thẳng d cắt đồ thị tại ba điểm phân biệt.
Bài 8) Cho hàm số y = x3 - 3x + 2. Gọi (d) là đường thẳng đi qua điểm A(3; 20) và có hệ số góc là m. Tìm
m để đường thẳng d cắt đồ thị tại ba điểm phân biệt.
Bài 9) Cho hàm số y = (x -1)(x2 - 2mx - m -1). Tìm m để đồ thị hàm số cắt trục hoành tại 3 điểm phân
biệt có hoành độ lớn hơn -1.
Bài 10) Cho hàm số
83
4
23
3 2
y = x - x - x + . Tìm giá trị của tham số m để đường thẳng
83
y = mx + cắt đồ
thị tại 3 điểm phân biệ
Chuyên đề LTĐH Ứng dụng đạo hàm, các bài toán liên quan GIẢI TÍCH Gv: Nguyễn Lương Thành – (Năm học 2007 – 2008) Trang 5 Vấn đề 4: Sự tương giao của hai đồ thị hàm số Bài 1) Cho hàm số 1 2 - ++ = x mxmxy . Tìm m để đồ thị hàm số cắt trục hoành tại hai điểm phân biệt và hai điểm đó có hoành độ dương. Bài 2) Cho hàm số 2 422 - +- = x xxy . Tìm m để đường thẳng (d): mmxy 22 -+= cắt đồ thị của hàm số tại hai điểm phân biệt. Bài 3) Cho hàm số ( )12 332 - -+- = x xxy . Tìm m để đường thẳng y = m cắt đồ thị hàm số tại hai điểm A, B sao cho AB = 1. Bài 4) Cho hàm số 1 1042 2 +- +- = x xxy . Định m để đường thẳng (d): 0=-- mymx cắt đồ thị tại hai điểm phân biệt A, B. Xác định m để AB ngắn nhất. Bài 5) Cho hàm số 124 -+-= mmxxy . Xác định m sao cho đồ thị hàm số cắt trục hoành tại bốn điểm phân biệt. Bài 6) Cho hàm số ( )( )mmxxxy ++-= 21 . Tìm m để đồ thị hàm số cắt trục hoành tại ba điểm phân biệt. Bài 7) Cho hàm số 132 23 --= xxy . Gọi d là đường thẳng đi qua điểm M(0; -1) và có hệ số góc bằng k. Tìm k để đường thẳng d cắt đồ thị tại ba điểm phân biệt. Bài 8) Cho hàm số 233 +-= xxy . Gọi (d) là đường thẳng đi qua điểm A(3; 20) và có hệ số góc là m. Tìm m để đường thẳng d cắt đồ thị tại ba điểm phân biệt. Bài 9) Cho hàm số ( )( )121 2 ----= mmxxxy . Tìm m để đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt có hoành độ lớn hơn -1. Bài 10) Cho hàm số 3 84 3 2 23 +--= xxxy . Tìm giá trị của tham số m để đường thẳng 3 8 += mxy cắt đồ thị tại 3 điểm phân biệt. Bài 11) Cho hàm số 2 142 + ++ = x xxy . Tìm các giá trị của m để đường thẳng (d): mmxy -+= 2 cắt đồ thị hàm số tại hai điểm phân biệt thuộc cùng một nhánh của đồ thị. Bài 12) Cho hàm số 1 12 - -+ = x mxxy . Tìm m để đường thẳng (d): y = m cắt đồ thị hàm số tại hai điểm A, B sao cho OA ^ OB. Bài 13) Cho hàm số 2 32 2 - - = x xxy . Tìm m để đường thẳng mmxy -= 2 cắt đồ thị tại hai điểm thuộc hai nhánh của đồ thị. Chuyên đề LTĐH Ứng dụng đạo hàm, các bài toán liên quan GIẢI TÍCH Gv: Nguyễn Lương Thành – (Năm học 2007 – 2008) Trang 6 Bài 14) Cho hàm số 1 1 - + = x xy (C). a) Gọi (d) là đường thẳng 02 =+- myx . Chứng minh (d) luôn cắt (C) tại hai điểm phân biệt A, B trên hai nhánh của (C) b) Tìm m để độ dài đoạn AB ngắn nhất. Bài 15) Cho hàm số 1 12 + ++= x xy . Tìm m để đường thẳng ( ) 11 ++= xmy cắt đồ thị tại hai điểm có hoành độ trái dấu. Bài 16) Tìm m để đồ thị hàm số ( ) 223 21 mmxxmxy ++++= cắt trục hoành tại 3 điểm phân biệt có hoành độ âm. Bài 17) Cho hàm số ( ) 1133 2223 +--+-= mxmmxxy . Tìm m để đồ thị hàm số cắt trục hoành tại 3 điểm có hoành độ dương. Bài 18) Cho hàm số 23 ++= mxxy . Tìm m để đồ thị hàm số cắt trục hoành tại duy nhất một điểm. Bài 19) Cho hàm số ( ) 1 22 + -++ = x mxmxy . Xác định m để cho đường thẳng ( )4+-= xy cắt đồ thị hàm số tại hai điểm đối xứng nhau qua đường phân giác của góc phần tư thứ nhất. Bài 20) Cho hàm số 1 32 + -- = x xxy (C) a) Chứng tỏ đường thẳng (d): mxy +-= luôn cắt (C) tại hai điểm M, N thuộc hai nhánh của (C) b) Định m để M, N đối xứng nhau qua đường thẳng y = x. Bài 21) Cho (C): 1 32 - -+ = x xxy và (d): mxy +-= a) Tìm m để (d) cắt (C) tại hai điểm M, N và độ dài MN nhỏ nhất. b) Gọi P, Q là giao điểm của (d) và hai tiệm cận. Cm: MP = NQ Bài 22) Cho hàm số ( ) ( ) ( )mxmxmxy 2131231622 23 +----+= . Định m để đồ thị hàm số cắt trục hoành tại ba điểm phân biệt có tổng các bình phương các hoành độ bằng 28. Bài 23) Cho hàm số mxxxy +--= 93 23 . Xác định m để đồ thị hàm số cắt trục hoành tại ba điểm phân biệt với hoành độ lập thành cấp số cộng. Bài 24) Cho hàm số ( ) 1212 24 +++-= mxmxy . Xác định m để đồ thị hàm số cắt trục hoành tại bốn điểm phân biệt với hoành độ lập thành một cấp số cộng. Bài 25) Cho hàm số ( ) 1 22 + -++ = x mxmxy . Tìm m để đường thẳng (d): y = -x – 4 cắt đồ thị tại hai điểm M, N sao cho M, N cùng với gốc tọa độ O tạo thành tam giác đều OMN.
File đính kèm:
- giai_tich_12_vande4.pdf