Chuyên đề Giới hạn 11
MỤC LỤC
PHẦN I GIỚI HẠN CỦA DÃY SỐ.
A - CÁC KIẾN THỨC CẦN NHỚ.
B - GIỚI HẠN DÃY SỐ
DẠNG I : CÁC BÀI TOÁN GIỚI HẠN CƠ BẢN
DẠNG 2 TÌM GIỚI HẠN KHI BIẾT BIỂU THỨC TRUY HỒI CỦA DÃY SỐ
PHẦN II : GIỚI HẠN HÀM SỐ
A - CÁC KIẾN THỨC CẦN NHỚ.
B- CÁC DẠNG TOÁN .
I / DẠNG CƠ BẢN
II/ GIỚI HẠN DẠNG :
III/ GIỚI HẠN DẠNG:
IV/ GIỚI HẠN DẠNG MŨ VÀ LÔGARIT
V/ SỬ DỤNG ĐỊNH NGHĨA ĐẠO HÀM ĐỂ TèM GIỚI HẠN
PHẦN III : ỨNG DỤNG CỦA GIỚI HẠN
A- SỬ DỤNG GIỚI HẠN ĐỂ TÌM TIỆM CẬN CỦA HÀM SỐ:
B- SỬ DỤNG GIỚI HẠN ĐỂ XÉT TÍNH LIÊN TỤC
PHẦN IV GIỚI THIỆU MỘT SỐ ĐỀ THI
g ; cấp số nhân ; phương pháp quy nạp toán học ; hay có thể là phương trình tuyến tính sai phân hay chỉ là phép rút gọn đơn giản . . . . . . Ví dụ 1 Cho dãy số (un) xác định bởi: với Tìm . Giải. Theo giả thiết ta có: ; ;;..; . Cộng từng vế các đẳng thức trên ta có: = = . Ta có: Ví dụ 2 Cho dãy số xác định bởi : Tìm Giải. Ta có dãy số chính là dãy Ta chứng minh được dãy số có giới hạn . Đặt Chuyển qua giới hạn ta có vì nên Ví dụ 3 Cho Xét dãy Tìm Giải : Suy ra : Suy ra : Ví dụ 4 Cho dãy số (un) xác định bởi: với a) CMR: (un) là dãy tăng. b) CMR: (un) là dãy không bị chặn trên. c) Tính giới hạn: . Giải. a) Ta có: với là dãy tăng. b) (Phương pháp phản chứng) Giả sử (un) là dãy bị chặn trên. Do nó là dãy tăng nên nó có giới hạn, tức là:. Mặt khác lấy giới hạn các vế của đẳng thức đã cho ta có: (vô lý). Chứng tỏ (un) là dãy không bị chặn trên, tức là: c)Từ giả thiết ta biến đổi: Suy ra: ; ;; Vậy = =2009 Ví dụ 5 Cho dãy số (un) xác định bởi: Đặt . Tìm Giải : Ta có và . ( nếu dãy bị chặn trên thì có giới hạn ) . Giả sử dãy . (Phương pháp phản chứng) Từ giả thiết chuyển qua giới hạn thì vô lý vậy Mặt khác : Do đó Vậy Các bài tập tương tự . Bài 1. Cho dãy số (un) xác định bởi: a) CMR: b) Xác định công thức tổng quát của (un) theo n. c) Tìm Bài 2. Cho dãy số (xn) xác định bởi: a) CMR: (xn) là dãy số tăng. b) Tìm Bài 3. Tính các giới hạn sau: Bài 4. Tính các giới hạn sau: a) b) Phần ii : Giới hạn hàm số A - Các kiến thức cần nhớ. 1) Định nghĩa Cho hàm số f(x) xác định trên K có thể trừ điểm aK . Ta nói hàm số f(x) có giới hạn là L ( hay dần tới L) khi x dần tới a nếu với mọi dãy số sao cho khi thì Ta viết : hay 2) Các định lý Định lý 1 (Cỏc phộp toỏn về giới hạn hàm số ) ( với ) Định lý 2:Nếu hàm số cú giới hạn thỡ giới hạn đú là duy nhất Định lý 3:Cho 3 hàm số g(x),f(x),h(x) cựng xỏc định trong khoảng K chứa a và g(x) ≤ f(x) ≤ h(x). Nếu thỡ Định lý 4: Nếu Nếu Định lý 5:(giới hạn đặc biệt) ; ; ; *Cỏc dạng vụ định: 1) Dạng 2) Dạng 3) Dạng 4) Dạng Phương pháp chung : Khử dạng vô định +) Phân tích ra thừa số +) Nhân với biểu thức liên hợp thường gặp có biểu thức liên hợp có biểu thức liên hợp có biểu thức liên hợp có biểu thức liên hợp +) Đặt biến phụ +) Thêm bớt một số hoặc một biểu thức ..... B- Các dạng toán . I ) dạng cơ bản Dạng I : Phân tích ra thừa số Ví dụ 1 Tìm giới hạn sau : Giải : M= M= Ví dụ 2 Tìm giới hạn sau : Giải : Đây là dạng . Ta có Do nên Lưu ý : Đây là bài toán cơ bản nhưng học sinh rất dễ viết sai khi viết : Dạng II Thêm bớt nhân liên hợp Ví dụ 3 Tìm giới hạn sau : Giải : Nhân các biểu thức liên hợp Rút gọn và Kq : N = 5 Ví dụ 4 Tìm giới hạn sau : Giải : Đây là dạng Ta chuyển về các dạng vô định khác . Xét các giới hạn sau : Đặt Ta có Nhân với biểu thức liên hợp và Vậy Ta có bài toán tổng quát : Dạng III Đặt biến phụ Ví dụ 5 Tìm giới hạn sau : Giải : Đặt khi thì Ta có : Dạng tổng quát : Tìm giới hạn Giả sử .Tính II/ Giới hạn dạng : và Tổng quát : (*) với 1) Các bài toán cơ bản : Các giới hạn cơ bản ( với ): 2) Phương pháp a) Phương pháp : B1) Nhận dạng giới hạn . B2) Sử dụng các công thức lượng giác ; nhân với biểu thức liên hợp Thêm bớt ;đặt biến phụ ....... . B3) Đưa bài toán về đúng dạng (*) . B4) Tìm kết quả . b) Yêu cầu : +) Học sinh nhớ các công thức lượng giác - Công thức cộng - Công thức nhân đôi ; nhân ba ; hạ bậc - Công thức biến tổng thành tích ; tích thành tổng +) Học sinh nhớ các biểu thức liên hợp . 3) áp dụng A- Loại 1( sử dụng các phép biến đổi lượng giác ) Phương pháp : Trong phương pháp này tác giả hướng dẫn học sinh chủ yếu bằng phương pháp sử dụng các công thức lượng giác ; thêm bớt ;nhuần nhuyễn ; đua về dạng (*) Ví dụ 1 Tìm các giới hạn sau : Giải : Ta có =1/2 ( Có thể nhân liên hợp với 1+cosx ) Ví dụ 2 Tìm các giới hạn sau : Giải : Ta có = Ví dụ 3 Tìm giới hạn sau : Giải : Làm tương tự bài 1 C = 7 Ví dụ 4 Tìm giới hạn sau : Giải : suy ra Ví dụ 5 Tìm giới hạn sau : Giải: Rút gọn Các bài tập tương tự . 1/Tính các giới hạn sau: 2/Tính các giới hạn sau: B-Loại 2 (Nhân với các biểu thức liên hợp) Phương pháp : Trong phương pháp này tác giả hướng dẫn học sinh chủ yếu bằng phương pháp sử dụng các biểu thức liên hợp ; thêm bớt nhân liên hợp chứa căn bậc 2;3 là chủ yếu .(có thể làm bằng cách khác) Ví dụ 1 Tìm giới hạn sau : Giải : Nhân cả tử và mẫu với biểu thức liên hợp suy ra KQ: C = Ví dụ2 Tìm giới hạn sau : Giải : Thêm bớt và nhân liên hợp . B=5/2 Các bài tập tương tự . Tính các giới hạn sau: C-Loại 3 (đặt biến phụ) Phương pháp : Trong phương pháp này tác giả hướng dẫn học sinh chủ yếu bằng phương pháp sử dụng các biến phụ Ví dụ 1 Tìm giới hạn sau : GiảI: Đặt x-1= y Ta có x=y+1 và khi : thì Ta có Ví dụ 2 Tìm giới hạn sau : Giải: Đặt Ta có và khi : thì Ta có Ví dụ 3 Tìm giới hạn sau : Giải : Đặt Ta có x= 1-y và thì Các bài tập tương tự . Tính các giới hạn sau: (Sử dụng phương pháp đặt ẩn phụ đổi biến) III/ Giới hạn dạng: Phương pháp : Dạng tổng quát 1) Nếu và thì 2) Nếu và thì ta có ngay kết quả . 3) Nếu A=1 và thì ta đặt f(x)=1+h(x) Ta có : Kết quả : ( -bất kỳ) 4) Đặc biệt : và Tổng quát : với với T=0 nếu Ta có kết quả sau : nếu nếu Ví dụ 1 Tìm giới hạn : Giải : Ví dụ 2 Tìm giới hạn : Giải : Xét giới hạn: Vậy Ví dụ 3 Tìm giới hạn : Giải : Ta có Đặt và thì Khi đó rút gọn KQ: C=1 Bài Tập Tính các giới hạn iV/ Giới hạn dạng Mũ và lôgarit: Phương pháp : +) Dạng tổng quát : +) Dạng cơ bản: ; +) Kết quả : Ví dụ 1 Tìm giới hạn : Giải : Ta có Ví dụ 2 Tìm giới hạn : Giải : Ta có Ví dụ 3 Tìm giới hạn : Giải : Ta có Ví dụ 4 Tìm giới hạn : Giải : Ta có Ví dụ 5 Tìm giới hạn : Giải : Ta có Ví dụ 6 Tìm giới hạn : Giải : Ta có Bài tập Tính các giới hạn Dạng - Lôgarit (a;b;c>0) V- SỬ DỤNG ĐỊNH NGHĨA ĐẠO HÀM ĐỂ TèM GIỚI HẠN Bài toán: Tính giới hạn Dạng (). 1)Phương pháp chung: Ta biến đổi giới hạn trên về dạng sau: Dạng 1: Ta được L = . ( công thức tính đạo hàm tại ) Dạng 2: Ta được L = với . Dạng 3: Ta được L = với . Chú ý: Một số bài toán có dạng vô định ta dùng cách biến đổi như sau: Dạng . Dạng . Dạng . Cho hàm số , để tính giới hạn mà: 1) và Dạng 2)và Dạng 3) Dạng Chuyển về dạng , rồi ta áp dụng 1 trong 3 dạng trên. Để tính giới hạn cụ thể ta làm các bước sau : B1/ Xét hàm số phù hợp với biểu thức bài toán B2/ Tính =? Và Và B3/ Viết biểu thức theo công thức tính đạo hàm. B4/ Kết quả 2)Các ví dụ minh hoạ: Ví dụ 1: Tính giới hạn sau Giải: B1) Xét B2) f(1)=0 ; B3) B4) KL:A=5/3 Ví dụ 2: Tính giới hạn sau B = . Giải: Xét , ta có: , Khi đó: . Ví dụ 3: Tính giới hạn C = . Giải: Viết lại giới hạn trên dưới dạng: C = Xét , ta có ; Đặt , ta có ; Khi đó: C = . Nhận xét: Để tính giới hạn trên bằng phương pháp thông thường ta phải làm như sau Do đó C = Ví dụ 4: Tính giới hạn Giải: Xét và f(0)=0 ; f’(x)= f’(0)=1/2 áp dụng công thức =1/2 Ví dụ 5: Tính giới hạn E= . Giải: Xét . Lấy logarit ta có Xét Ta có: Vậy E = . Ví dụ 6: Tính giới hạn Giải: Đối với bài này ta dùng phép thêm bớt hay nhân liên hợp là rất khó và dài . Nên phương pháp sử dụng đạo hàm rất có hiệu quả. Xét đặt khi thì Ta có Xét Vậy Vậy Đặt tương tự trên KL : F=8 Bài Tập tương tự Bài 1 Tớnh cỏc giới hạn sau: 1) 2). 3) 4) . Bài 2: Tỡm cỏc giới hạn sau 1) 4) 2). 3) 5) Bài 3 Tỡm giới hạn: Phần iII : ứng dụng của giới hạn A- Sử dụng giới hạn để tìm tiệm cận của hàm số: I )Kiến thức cần nhớ Cho hàm số y = f(x) cú đồ thị là (C) y = y0 là tiệm cận ngang của (C) nếu một trong hai điệu kiện sau được thoả món: x = x0 là tiệm cận đứng của (C) nếu một trong cỏc điều kiện sau đựơc thoả món: Đường thẳng y = ax + b ( ) được gọi là tiệm cận xiờn nếu một trong hai điều kiện sau thoả món: II ) Phương pháp chung Dạng 1: Tiệm cận hàm số hữu tỉ 1) Phương phỏp Tiệm cận đứng: Nghiệm của mẫu khụng phải là nghiệm của tử cho phộp xỏc định tiệm cận đứng. Tiệm cận ngang, xiờn: + Deg(P(x)) < Deg (Q(x)): Tiệm cận ngang y = 0 + Deg(P(x)) = Deg(Q(x)): Tiệm cận ngang là tỉ số hai hệ số bậc cao nhất của tử và mẫu. + Det (P(x)) = Det(Q(x)) + 1: Khụng cú tiệm cận ngang; Tiệm cận xiờn được xỏc định bằng cỏch phõn tớch hàm số thành dạng: f(x) = ax + b + với thỡ y = ax + b là tiệm cận xiờn. 2) Các ví dụ Vớ dụ 1. Tỡm cỏc tiệm cận của cỏc hàm số: Giải a. Ta thấy nờn đường thẳng x = 2 là tiệm cận đứng. +) Vỡ nờn y = 2 là tiệm cận ngang của đồ thị hàm số. b. +) . Nờn x = 3 là tiệm cận đứng của đồ thị hàm số. +) . Ta thấy Vậy y = x+ 2 là tiệm cận xiờn của đồ thị hàm số. c. Ta thấy +) Nờn x = 1 là đường tiệm cận đứng. +) . Nờn x = -1 là tiệm cận đứng. +). Nờn y = 0 là tiệm cận ngang của đồ thị hàm số. Dạng 2. Tiệm cận của hàm vụ tỉ : 1) Phương phỏp Ta phõn tớch Với khi đú cú tiệm cận xiờn bờn phải Với khi đú cú tiệm cận xiờn bờn tr ỏi 2) Các ví dụ Ví dụ2 Tìm tiệm cận xiên của hàm số: Giải :Gọi tiệm cân xiên là y=ax+b +) Tiệm cận xiên bên phải : =2 Vậy tiệm cận xiên bên phải là y=2x-2 +) Tiệm cận xiên bên trái . Vậy tiệm cận xiên bên trái là y=-2x+2 Bài Tập tương tự Bài 1. Tìm tiệm cận các hàm số sau: Bài 2. Tìm tiệm cận của các hàm số sau: Bài 3. Xác định m để đồ thị hàm số: có đúng 2 tiệm cận đứng. Bài 4. Tính diện tích của tam giác tạo bởi tiệm cận xiên của đồ thị tạo với hai trục toạ độ của các hàm số: Bài 5.(ĐHSP 2000). Tìm m để tiệm cận xiên của đồ thị hàm số tạo với hai trục toạ độ một tam giác có diện tích bằng 8 (đvdt) Bài 6. Cho hàm số: (1) Tìm m để tiệm cận xiên của đồ thị đi qua điểm Tìm m để đường ti
File đính kèm:
- GIOI HAN.doc