Cấu tạo nguyên tử

Mô hình nguyên tử là một nội dung của lý thuyết nguyên tử, nó phát biểu rằng nguyên tử được tạo thành từ các phần tử nhỏ hơn được gọi là các hạt hạ nguyên tử. Khái niệm nguyên tử được Democritus đưa ra từ khoảng 450 TCN. Tuy nhiên, các nhà khoa học cổ Hy Lạp không dựa trên các phương pháp thực nghiệm để xây dựng các lý thuyết mà dựa trên siêu hình học. Chính vì thế mà từ khi Democritus đưa ra khái niệm đó cho đến tận thế kỷ thứ 18 thì người ta mới có những bước tiến bộ đáng kể trong việc phát triển lý thuyết về nguyên tử. Trong hoá học, dựa trên định luật về bảo toàn khối lượng và định luật tỷ lệ các chất trong các phản ứng hoá học, vào năm 1808, John Dalton (1766-1844) đã đưa ra lý thuyết nguyên tử của mình để giải thích các định luật trên. Lý thuyết của ông dựa trên năm giả thuyết. Giả thuyết thứ nhất phát biểu rằng tất cả vật chất đều được tạo thành từ các nguyên tử. Giả thuyết thứ hai là các nguyên tử của cùng một nguyên tố sẽ có cùng một cấu trúc và tính chất. Giả thuyết thứ ba là các nguyên tử không thể bị phân chia, không thể được sinh ra hoặc mất đi. Giả thuyết thứ tư là các nguyên tử của các nguyên tố khác nhau kết hợp với nhau để tạo ra các hợp chất. Giả thuyết thứ năm là trong các phản ứng hoá học, các nguyên tử có thể kết hợp, phân tách hoặc tái sắp xếp lại. Lý thuyết của Dalton không chỉ giải thích các định luật trên mà còn là cơ sở để xây dựng các lý thuyết khác về nguyên tử sau này.

doc9 trang | Chia sẻ: giathuc10 | Lượt xem: 1534 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Cấu tạo nguyên tử, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
o ra một dòng hạt có thể đi qua khí bên trong ống. Người ta giả thiết rằng có một chùm hạt phát ra từ cực dương đi về phía cực âm và làm cho ống phát sáng. Chùm đó được gọi là chùm ca-tốt. Khi đặt một vật chướng ngại nhẹ trong ống thì vật đó bị di chuyển từ cực dương về cực âm, người ta kết luận hạt đó có khối lượng. Khi đặt một từ trường vào thì dòng hạt bị dịch chuyển, người ta kết luận hạt đó có điện tích.
Năm 1897, nhà vật lý người Anh Joseph John Thomson (1856-1940) đã kiểm chứng hiện tượng này bằng rất nhiều thí nghiệm khác nhau, ông đã đo được tỷ số giữa khối lượng của hạt và điện tích của nó bằng độ lệch hướng của chùm tia trong các từ trường và điện trường khác nhau. Thomson dùng rất nhiều các kim loại khác nhau làm cực dương và cực âm đồng thời thay đổi nhiều loại khí trong ống. Ông thấy rằng độ lệch của chùm tia có thể tiên đoán bằng công thức toán học. Thomson tìm thấy tỷ số điện tích/khối lượng là một hằng số không phụ thuộc vào việc ông dùng vật liệu gì. Ông kết luận rằng tất cả các chùm ca-tốt đều được tạo thành từ một loại hạt mà sau này nhà vật lý người Ái Nhĩ Lan George Johnstone Stoney đặt tên là "electron", vào năm 1891.
Năm 1909, nhà vật lý người Mỹ Robert Millikan (1868-1953) tìm ra điện tích của một điện tử bằng cách dùng thí nghiệm "giọt dầu" . Ông dùng tia X để làm cho các giọt dầu có điện tích âm, sau đó ông phun các giọt dầu này vào một dụng cụ sao cho các giọt dầu đó rơi vào khoảng không giữa hai tấm tích điện. Ông thay đổi điện tích của các tấm tích điện và xác định việc ảnh hưởng của sự thay đổi này đến quá trình rơi của các giọt dầu. Nhờ đó ông thấy điện tích của mỗi giọt dầu là một số nguyên lần điện tích của một đại lượng nào đó mà ông cho rằng đó là điện tích của một điện tử. Nhờ vào tỷ số điện tích/khối lượng của Thomson mà ông xác định được khối lượng của điện tử. Ông lý luận rằng chùm ca-tốt bị lệch đi đối với bất kỳ chất khí nào được dùng trong thí nghiệm nên ông cho rằng điện tử có mặt trong tất cả mọi nguyên tố. Do nguyên tử là trung hòa về điện, mà điện tử lại có điện tích âm nên cần phải có một điện tích dương tồn tại trong nguyên tử. Hơn nữa, vì khối lượng của điện tử rất nhỏ so với khối lượng của nguyên tử nên cần phải có một thực thể nào đó chịu trách nhiệm cho khối lượng lớn của nguyên tử. Đây là lần đầu tiên các kết quả thực nghiệm cho thấy nguyên tử có thể bị phân chia và đó là cơ sở cho mô hình nguyên tử.
Các mô hình nguyên tử
Dựa trên một số giả thuyết do Lord Kelvin (1824-1907) đưa ra và các kết quả của Millikan, năm 1902, Thomson đưa ra mô hình nguyên tử đầu tiên. Mô hình này cho rằng các điện tử mang điện tích âm được trộn lẫn trong vật chất mang điện tích dương, giống như các quả mận nhỏ được trộn lẫn trong bánh, mô hình này còn được gọi là mô hình bánh mận (tiếng Anh: plum pudding). Nếu một điện tử bị xê dịch thì nó sẽ bị kéo về vị trí ban đầu. Điều này làm cho nguyên tử trung hòa về điện và ở trạng thái ổn định. Cùng khoảng thời gian đó, một nhà vật lý người Nhật bản là Hantaro Nagoaka đưa ra mô hình Sao Thổ của ông vào năm 1904. Mô hình này cho rằng vật chất mang điện tích dương của nguyên tử giống như sao Thổ, còn các điện tử mang điện tích âm thì chuyển động giống như các vòng đai của sao Thổ. Mô hình này sẽ không bền vì điện tử sẽ mất năng lượng và rơi vào tâm của nguyên tử.
Mô hình của Thomson được thừa nhận hơn mô hình của Nagoaka nhưng nó cũng chỉ đứng vững được vài năm cho đến khi nhà vật lý người New Zealand là Ernest Rutherford (1871-1937) đưa ra mô hình nguyên tử của ông. Cùng với đồng nghiệp là Hans Geiger và Ernest Mardsen, Rutherford đã dùng một chùm hạt alpha bắn phá một lá vàng mỏng trong thí nghiệm mang tên ông. Hạt alpha là một hạt mang điện dương (+2), có khối lượng khoảng bốn lần khối lượng nguyên tử hydrogen. Họ trông đợi phần lớn hạt alpha sẽ xuyên qua lá vàng mà không bị lệch hướng nhiều vì khối lượng và điện tích theo mô hình của Thomson phân bố đồng nhất trong nguyên tử. Nhưng kết quả không như trông đợi. Không những có nhiều hạt bị lệch một góc rất lớn so với hướng ban đầu mà còn có nhiều hạt bị bật ngược trở lại. Rutherford cho rằng các hạt điện tích dương alpha đã va chạm với một hạt điện tích dương khác chiếm một thể tích rất nhỏ. Ông gọi đó là hạt nhân. Hạt nhân có các điện tử quay xung quanh giống như các hành tinh quay xung quanh Mặt Trời, tuy thể tích hạt nhân rất nhỏ so với nguyên tử nhưng phần lớn khối lượng nguyên tử lại tập trung ở đó. Mô hình này còn có cái tên là mẫu hành tinh nguyên tử.
Mô hình này không được thừa nhận rộng rãi vì các nhà vật lý không hiểu tại sao một phần nhỏ của nguyên tử lại có thể mang hầu hết khối lượng của nó. Hơn nữa, mô hình này mâu thuẫn với bảng tuần hoàn các nguyên tố hóa học của Dmitri Ivanovich Mendeleev. Theo Mendeleev thì khối lượng nguyên tử của các nguyên tố quyết định tính chất của nguyên tố đó mà không phụ thuộc vào điện tích của hạt nhân. Mô hình này cũng không giải thích được tại sao điện tử không bị rơi vào hạt nhân.
Việc tìm ra proton - notron 
Năm 1913, nhà vật lý người Anh Henry Gwyn Jeffreys Moseley (1887-1915) thấy rằng mỗi nguyên tố có một điện tích dương duy nhất tại hạt nhân của nguyên tử. Do đó hạt nhân phải chứa một loại hạt mang điện tích dương được gọi là proton. Số proton trong hạt nhân được gọi là nguyên tử số (tiếng Anh: atomic number). Moseley cho rằng bảng tuần hoàn nên được sắp xếp theo sự tăng dần của nguyên tử số thay cho việc sắp xếp theo sự tăng dần của nguyên tử lượng. Điều này làm cho bảng tuần hoàn thêm hoàn thiện và tiên đoán chính xác các nguyên tố sẽ được tìm ra.
Người ta thấy rằng nguyên tử lượng của hyđrô lớn hơn tổng khối lượng của một proton và một điện tử chính vì vậy phải tồn tại một loại hạt khác trong hạt nhân đóng góp vào khối lượng của nguyên tử. Vì nguyên tử trung hòa về điện nên hạt này phải không mang điện tích. Nhà vật lý người Pháp Irene Joliot-Curie (1897-1956) đã tiến hành một thí nghiệm, bà bắn phá một mẫu berili bằng chùm hạt alpha và làm phát ra một chùm hạt mới có khả năng thấm sâu vào vật chất nhiều hơn hạt alpha. Năm 1932, nhà vật lý người Anh James Chadwick (1891-1974) phát hiện ra rằng chùm hạt đó được tạo thành từ các hạt có cùng khối lượng với proton. Do điện từ trường không làm lệch hướng chuyển động của hạt này nên nó là một hạt trung hòa về điện và ông gọi nó là neutron. Và mô hình nguyên tử của Rutherford lúc đó là: proton và neutron tạo nên hạt nhân nguyên tử, điện tử chuyển động xung quanh và chiếm phần lớn thể tích của nguyên tử đó. Khối lượng của điện tử rất nhỏ so với khối lượng của hạt nhân nguyên tử. Đến lúc đó người ta vẫn không hiểu tại sao điện tử lại có thể ổn định trong nguyên tử mà không bị rơi vào hạt nhân.
Vì sao điện tử không rơi vào trong hạt nhân
Đây chính là câu hỏi mà Niels Bohr đã không trả lời được vào năm 1912. Ngay cả sau khi khám phá ra tính chất sóng tự nhiên của điện tử và sự tương đồng với các sóng đứng trong các hệ cơ học, câu hỏi trên vẫn chưa có lời giải thích; điện tử vẫn là một hạt có điện tích âm và bị hút vào trong hạt nhân.
Câu trả lời hoàn thiện đến từ nguyên lý bất định của Werner Heisenberg, nó phát biểu rằng một hạt lượng tử như electron không thể nào xác định được vị trí và động lượng cùng một lúc. Để hiểu được sự hoạt động của nguyên lý này, ta giả sử đặt một điện tử vào trong một cái hộp nhỏ. Các bức thành hộp có độ lệch là δx, hộp này càng nhỏ, ta càng biết rõ vị trí của điện tử trong hộp hơn. Nhưng khi cái hộp nhỏ lại, sự bất định của động năng của electron tăng lên. Và kết quả của sự bất định này, vì điện tử sẽ có động năng lớn, nó có thể xuyên thủng thành hộp và thoát ra ngoài hộp.
Vùng gần hạt nhân có thể được xem như một cái hộp phễu cực nhỏ, các bức thành của nó tương ứng với lực hút tĩnh điện, cái phải lớn hơn, nếu một electron bị chế ngự bên trong vùng này muốn thoát ra ngoài. Khi một điện tử bị kéo lại gần hạt nhân bởi lực hút tĩnh điện, vùng thể tích của nó bị giảm đi một cách nhanh chóng. Do vị trí của nó càng dễ xác định hơn, động năng của nó lúc này lại trở nên bất định, động năng của điện tử tăng lên một cách nhanh chóng, hơn là thế năng của nó để rơi vào hạt nhân, vì vậy nó bị bật lại tới quỹ đạo thấp nhất, tương ứng với n = 1.
Bản chất lưỡng tính
Năm 1900, nhà vật lý người Đức Max Planck (1858-1947) nghiên cứu sự phát xạ ánh sáng của một vật nóng. Ông giả thiết rằng sự phát xạ sóng điện từ theo từng lượng gián đoạn gọi là lượng tử năng lượng (tiếng Anh: quantum of energy), hay gọi tắt là lượng tử. Một lượng tử năng lượng của sóng điện từ tỷ lệ với tần số của nó với hệ số tỷ lệ được gọi là hằng số Plank. Năm 1905, khi giải thích cho hiệu ứng quang điện, Albert Einstein (1879-1955) cho rằng ánh sáng không chỉ được phát xạ theo từng lượng tử mà còn có thể bị hấp thụ theo từng lượng tử. Ánh sáng vừa có tính chất sóng và tính chất hạt. Mỗi hạt ánh sáng được gọi là một quang tử (photon), có năng lượng là một lượng tử ánh sáng. Giả thuyết của Einstein giúp giải thích sự phát xạ trong ống chùm ca-tốt.
Mô hình nguyên tử Bohr
Năm 1913, nhà vật lý lý thuyết người Đan Mạch Niels Bohr (1885-1962) đưa ra mô hình bán cổ điển về nguyên tử hay còn gọi là mô hình nguyên tử của Bohr. Bohr thay đổi mô hình của Rutherford bằng cách giải thiết rằng các điện tử chuyển động xung quanh hạt nhân theo các quỹ đạo có năng lượng và bán kính cố định. Năng lượng của điện tử phụ thuộc vào bán kính quỹ đạo của điện tử đó. Điện tử nằm trên quỹ đạo có bán kính nhỏ nhất sẽ có năng lượng nhỏ nhất và đó là trạng thái năng lượng ổn định (tên khác: trạng thái ổn định, hay trạng thái cơ bản) nhất của điện tử, điện tử không thể nằm ở các trạng thái nào thấp hơn trạng thái đó. Tuy vậy, điện tử có thể có năng lượng cao hơn khi nó nằm trên các quỹ đạo xa hạt nhân hơn, lúc này điện tử nằm ở trạng thái kích thích.
Các mức năng lượng giống như các bậc thang, điện tử không thể ở giữa các mức đó được mà chỉ có thể ở trên một bậc thang nào đó. Khi chuyển từ mức năng lượng này sang mức năng lượng khác, điện tử có thể hấp thụ hoặc phát ra năng lượng. Năng lượng hấp thụ và phát xạ của một quang 

File đính kèm:

  • docCau Tao Nguyen Tu.doc
Giáo án liên quan