Bài tập tự luyện Phương trình mũ, logarit

log x 2x 1 log x 1 2 2 ( 2 + − = + ) ( ) log x 1 log x 1 2 2 ( 2 − = + ) ( ) log x 2x 5 1 3  −  =   ( )

log 8 10x 12x log 2x 1 ( − − = − 2) ( )3 2 log x 5log 9x 3 0 ( ) 3 3 2 − + =

log x 3 log x 1 2 log 8 4 4 4 ( + − − = − ) ( ) log 2.log 2 log 2 x 2x 4x =

log x 2 log x log 8 3 3 3 ( − + = ) log x 9 2log 2x 1 2 ( − + − = )

log x 3 2log x 2 log0,4 ( + − − = ) ( ) log x 2 log x 2 2 log 8 4 4 4 ( + − − = − ) ( )

1 1 log x 5 log x 3 log 2x 1 5 5 5 ( ) ( )

2 2

+ + − = + 2 1 2

2

2log x log x log x 9 + + =

pdf2 trang | Chia sẻ: lethuong715 | Lượt xem: 666 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Bài tập tự luyện Phương trình mũ, logarit, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Bài Tập Phương Trình Mũ – Logarit 
3x 1 x 23 9− += 
2x 3x 2 x 12 16+ − += 
5 3x6 216− = 
2x x 27 1+ − = 
x 1 x 1 2x 52 .5 10− − += 
2x x 1 x3 81− −= 1 2x
1
3
27
− = 
3x 2
1
16
2 −
= 
2x 5 5x 22 5
5 2
− −
   =   
   
2x 15 x3 9− = 
2x x 2 3x 225 5− + −= 
2 x 3x 5x 6 12
2
− +
− +  =  
 
2x 15 x5 25− = 
2x 2x5 125− = 
2 x 1x 3 15
25
−
−  =  
 
 x 3
1
6
216
− = 
2x x 2 110
100
+ − = x 2x 34 8 −= 
2x x x 22 4− += 
2x 4x 13
243
− + = 
x 1 2x 2x x 13 18 .2 .3− − += ( ) ( )x 6x 50,4 6,25 −= x x 2 x 12 .3.3 .5 1500− + = 
2x 1 2x 15 3.5 550+ −− = x 1 x 1 2x 52 .5 0.001.10− − += 
x 10 x 5
x 10 x 1516 0,25.8
+ +
− −= 
x x
x 1 13 .
3 27
   =   
   
x
x 23 .5 225= 
x x3 4 9
.
4 3 16
    =   
   
x x2 9 27
.
3 8 64
    =   
   
3x 7 7x 33 7
7 3
− −
   =   
   
 x 2x 1 2x 127 9− −= x 1 x5 5 4 0−− + = 
x
x 23 8.3 15 0− + = 
2 x 1x 1 13
27
− −
−  =  
 
2x 15 x3 9− = 
2x 2x x 39 3− −= 3x 2
x 3
1
5
5
−
−
= 
3x 2 12
8
− = 
23x 7 x 4x 52 4− + −= 
2x x x 225 5− += 
2
x6x 32 8 5 0
+
+ − = 
x 1 2x 14.9 3 2− += 
2x 3 x 5x 62 5− − += 
x 1
x x5 .8 500
−
= x x 110 10 0,11−+ = 
x x 2 x 2 x 11 13.4 .9 6.4 . .9
3 2
+ + ++ = x 1 x 2x 52 .5 2.10+ += x x 1 x 22 .3 .5 12− − = 
2x 6x 2,52 16 2− − = x 1 x 1 x 2 x 1 x x 22 2 2 3 3 3− − − − −+ + = − + + x x4 2 6 0+ − = 
x x 19 8.3 1 0−− − = 2x 1 x2 5.2 2 0+ − + = x 1 x 23.9 24.3 4 0− −− + = x 1 x 29 3 4+ ++ = 
2x x5 2.5 15 0− − = 2x 1 x 1
1
3.5 2.5
5
− −− = 2x 8 x 53 4.3 27 0+ +− + = x 1,5 x x 14 9 6+ ++ = 
x x4 9.2 8 0− + = 2x 3 x 24 3.4 1 0− −− − = x x 14 2 80++ = 2x x13 6.13 5 0− + = 
1
x x216 15.4 4
+
= + 
x2x 8.6 12 06 − + = 2x 1 x 22 2 16+ ++ = x x4 9.2 8 0− + = 
2x x5 4.5 5 0− − = 4 x 2 x3 4.3 3 0− + = 
2 2x 2 x 24 9.2 8 0+ +− + = x 2 2 x3 3 0+ −+ = 
x 2 2 x2 2 15+ −− = x 1 1 x5 5 26+ −+ = x 1 2 x2 2 9+ −+ = x x x4 9 2,5.6+ = 
x 1 2 x15.2 15.2 135+ −+ = 
2 21 x 1 x10 10 99+ −− = 2x x 2x4.2 6 18.3− = 
( ) ( )x x4 15 4 15 8− + + = ( ) ( )x x2 3 2 3 4− + + = x x 125 5 50− − ++ = 
( ) ( )x x5 2 6 5 2 6 10− + + = ( ) ( )x x7 48 7 48 14+ + − = 
1 3
3
x x64 2 12 0
+
− + = 
x x 1 325 6.5 5 0+− + = 2x 4 x 2x 23 45.6 9.2 0+ ++ − = x x x6.9 13.6 6.4 0− + = 
x x x3.16 37.36 26.81+ = 3x 3 5 3x5.2 3.2 7 0− −− + = x 1 x 29 3 18 0+ ++ − = 
 1
x x x5.4 7.10 2.25 0− + = x x x8 18 2.27+ = x 2 x 24 16 2− −+ = 
1
x x24 7.2 4
− + −− = 
2 23x 2x 1 3x 2x4 2 9.2− + −+ = 
1
x x216 15.4 4
+
= + 
4x 8 2x 53 4.3 27 0+ +− + = ( ) ( )x x4 15 4 15 62+ + − = x x x3.49 2.14 4 0+ − = 
( ) ( )1
3
2
1
3
log x 3x 4 log 2x 2+ − = + ( )1log x log x 1
2
= + 2x xlog 10 log 10 6 0− − = 
( ) ( )23 3log x 4x 3 log 3x 21− + = + ( ) ( )22 2log x 6 log 3x 6− = − ( )25log x 11x 43 2− + = 
( ) ( )24 4log x 4x 3 log 3x 7− + = − ( ) ( )25 5log 2x x 3 log 2x 1− + = + x 1log 4 2− = 
( )2xlog 3x 5x 3 2− − = ( ) ( )log 2x 2log 4x 15= − ( )2xlog 2x 3x 4 2− − = 
( )2x 1log x 3x 1 1+ − + = ( )2xlog 3x 8x 3 2− + = ( )2x 1log 3x 7x 2 2− − − = 
( )25 xlog x 2x 65 2− − + = 1 1
5 5
x 2 2
log log
10 x 1
+
=
+
 ( )5 5
3x
log x 2 log
x 2
− =
+
( )x x2 1 x
2
1
log 4 15.2 27 2log 0
4.2 3
 
+ + − = 
− 
 ( ) ( )21 1
3 3
log x 7x 1 log 5 2x− − = − 
( ) ( )22 2log x 2x 1 log x 1+ − = + ( ) ( )22 2log x 1 log x 1− = + ( )3log x 2x 5 1 −  =  
( ) ( )32log 8 10x 12x log 2x 1− − = − ( )23 32 log x 5log 9x 3 0− + = 
( ) ( )4 4 4log x 3 log x 1 2 log 8+ − − = − x 2x 4xlog 2.log 2 log 2= 
( )3 3 3log x 2 log x log 8− + = ( )log x 9 2log 2x 1 2− + − = 
( ) ( )log x 3 2log x 2 log0,4+ − − = ( ) ( )4 4 4log x 2 log x 2 2 log 8+ − − = − 
( ) ( )5 5 5
1 1
log x 5 log x 3 log 2x 1
2 2
+ + − = + 2 12
2
2log x log x log x 9+ + = 
( ) ( ) ( )9 9 9log x 1 log 1 x log 2x 3+ − − = + ( ) ( ) ( )7 7 7log x 2 log x 2 1 log 2x 7− − + = − − 
( ) ( )2 1
2
log x 1 1 log 3 x+ + = − 
1 4
3
5 4.log x 1 log x
+ =
− +
 3 13
3
log x log x log x 6− + = 
2 9 13
7 log x 11 log x 12
+ =
− +
2 2
1 2
1
2 log x 4 log x
+ =
− +
3 3
1 3
2
4 log x log x
+ =
−
x 4
7
log 2 log x 0
6
− + = 2 xlog x log 2 2,5+ = 
2
2 12
2
log x 3log x log x 2+ + = 
2 2xx
log 16 log 64 3+ = ( ) ( )222 0,2log x 1 5 log x 1− = + − ( ) ( )
22
2 2log x 1 3 log x 1− = + − 
2 2log x 9.log x 40+ = 2 22 2log x 3 2.log x+ = 
2 3log x 10log x 1 0− + = 
2
64 x
5
log x log 4
3
+ = 264 x
5
log x log 4
3
+ = 2x x xlog 5 log 5x 2,25 log 5+ − = 
x 16 23.log 16 4.log x 2.log x− = x 2log 16 log x 3 0− + = 5 x2log x log 125 1 0− − = 
3 2
x x xlog 10 log 10 6log 10 0− − = 4 log x 3 log x− = 
2
3 32log x 5log 9x 3 0− + = 
3 x 3 x
1
log x log 3 log x log 3
2
+ = + + ( )
2
1 1
10 10
2x 54
log log x 4
x 3
−
= −
+
 1 1
3 3
log x 3 log x 2 0− + =
  2

File đính kèm:

  • pdfBai-Tap-Tu-Luyen-PT-Mu-Logarit.pdf