Giáo án Đại số lớp 10 tiết 23- Phương trình và hệ phương trình bậc nhất nhiều ẩn

I. MỤC TIÊU:

 Kiến thức:

- Nắm vững khái niệm pt bậc nhất hai ẩn, hệ pt bậc nhất hai ẩn và tập nghiệm của chúng.

- Hiểu rõ phương pháp cộng đại số và phương pháp thế.

 Kĩ năng:

- Giải được và biểu diễn được tập nghiệm của pt bậc nhất hai ẩn.

- Giải thành thạo hệ pt bậc nhất hai ẩn bằng phương pháp cộng và phương pháp thế.

- Giải được hệ pt bậc nhất ba ẩn đơn giản.

- Giải được một số bài toán thực tế đưa về việc lập và giải hệ pt bậc nhất hai, ba ẩn.

- Biết dùng MTBT để giải hệ pt bậc nhất hai, ba ẩn.

 Thái độ:

- Rèn luyện tính cẩn thận, chính xác.

- Luyện tư duy linh hoạt thông qua việc biến đổi hệ phương trình.

II. CHUẨN BỊ:

 Giáo viên: Giáo án. Hình vẽ minh hoạ.

 Học sinh: SGK, vở ghi. Ôn tập kiến thức đã học về hệ pt bậc nhất hai ẩn.

III. HOẠT ĐỘNG DẠY HỌC:

 1. Ổn định tổ chức: Kiểm tra sĩ số lớp.

 2. Kiểm tra bài cũ: (3')

 

doc2 trang | Chia sẻ: oanh_nt | Ngày: 29/01/2015 | Lượt xem: 928 | Lượt tải: 2download
Bạn đang xem nội dung tài liệu Giáo án Đại số lớp 10 tiết 23- Phương trình và hệ phương trình bậc nhất nhiều ẩn, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Ngày soạn: 10/10/2007	Chương III: PHƯƠNG TRÌNH. HỆ PHƯƠNG TRÌNH 
Tiết dạy:	23	Bàøi 3: PHƯƠNG TRÌNH VÀ HỆ PHƯƠNG TRÌNH 	BẬC NHẤT NHIỀU ẨN
I. MỤC TIÊU:
	Kiến thức: 	
Nắm vững khái niệm pt bậc nhất hai ẩn, hệ pt bậc nhất hai ẩn và tập nghiệm của chúng.
Hiểu rõ phương pháp cộng đại số và phương pháp thế.
	Kĩ năng: 
Giải được và biểu diễn được tập nghiệm của pt bậc nhất hai ẩn.
Giải thành thạo hệ pt bậc nhất hai ẩn bằng phương pháp cộng và phương pháp thế.
Giải được hệ pt bậc nhất ba ẩn đơn giản.
Giải được một số bài toán thực tế đưa về việc lập và giải hệ pt bậc nhất hai, ba ẩn.
Biết dùng MTBT để giải hệ pt bậc nhất hai, ba ẩn.
	Thái độ: 
Rèn luyện tính cẩn thận, chính xác.
Luyện tư duy linh hoạt thông qua việc biến đổi hệ phương trình.
II. CHUẨN BỊ:
	Giáo viên: Giáo án. Hình vẽ minh hoạ.
	Học sinh: SGK, vở ghi. Ôn tập kiến thức đã học về hệ pt bậc nhất hai ẩn.
III. HOẠT ĐỘNG DẠY HỌC:
	1. Ổn định tổ chức: Kiểm tra sĩ số lớp.
	2. Kiểm tra bài cũ: (3')
	H. Nêu dạng của hệ phương trình bậc nhất hai ẩn và phương pháp giải?
	Đ. Phương pháp thế, phương pháp cộng đại số.
	3. Giảng bài mới:
TL
Hoạt động của Giáo viên
Hoạt động của Học sinh
Nội dung
Hoạt động 1: Ôn tập phương trình bậc nhất hai ẩn
10'
H1. Thế nào là một nghiệm của (1)?
H2. Tìm các nghiệm của pt:
	3x – 2y = 7
(Mỗi nhóm chỉ ra một số nghiệm)
H3. Xác định các điểm (1; –2), (–1; –5), (3; 1), … trên mp Oxy?
Nhận xét?
Đ1. Nghiệm là cặp (x0; y0) thoả ax0 + by0 = c.
Đ2. 
(1; –2), (–1; –5), (3; 1), …
Các điểm nằm trên đường thẳng y = 
1. Phương trình bậc nhất hai ẩn
Dạng: ax + by = c (1)
	trong đó a2 + b2 ≠ 0
Chú ý:
· Þ (1) vô nghiệm
· Þ mọi cặp (x0;y0) đều là nghiệm
· b ≠ 0: (1) Û y = 
Tổng quát:
· Phương trình (1) luôn có vô số nghiệm.
· Biểu diễn hình học tập nghiệm của (1) là một đường thẳng trong mp Oxy.
Hoạt động 2: Ôn tập Hệ hai phương trình bậc nhất hai ẩn
17'
H1. Nhắc lại các cách giải (2)
Áp dụng: Giải hệ:
· HD học sinh nhận xét ý nghĩa hình học của tập nghiệm của (2).
Đ1. Mỗi nhóm giải theo một cách.
· (d1): a1x + b1y = c1
 (d2): a2x + b2y = c2
+ (d1), (d2) cắt nhau Û (2) có 1 nghiệm
+ (d1)//(d2) Û (2) vô nghiệm
+ (d1)º(d2) Û (2) vô số nghiệm
2. Hệ hai phương trình bậc nhất hai ẩn
· Dạng: (2)
· Cặp số (x0; y0) là nghiệm của (2) nếu nó là nghiệm của cả 2 phương trình của (2).
· Giải (2) là tìm tập nghiệm của (2).
Hoạt động 3: Giới thiệu cách giải hệ phương trình bằng định thức
10'
H1. Giải các hệ pt bằng định thức:
a) 
b) 
Đ1. 
a) D = 23, Dx = –23, Dy = 46
Þ Nghiệm (x; y) = (–1; 2)
b) D = 29, Dx = 58, Dy = –87
Þ Nghiệm (x; y) = (2; –3)
· D = 
Dx = , Dy = 
· D ≠ 0: (2) có nghiệm duy nhất 	
· D = 0 và (Dx ≠ 0 hoặc Dy ≠0)
(2) vô nghiệm
· D = Dx = Dy = 0: (2) vô số nghiệm
Hoạt động 4: Củng cố
3'
· Nhắc lại các cách giải hệ phương trình bậc nhất hai ẩn
	4. BÀI TẬP VỀ NHÀ:
1, 2, 3, 4 SGK.
Đọc tiếp bài "Phương trình và hệ phương trình bậc nhất nhiều ẩn"
IV. RÚT KINH NGHIỆM, BỔ SUNG:

File đính kèm:

  • docdai10cb23.doc
Giáo án liên quan