Ứng dụng của đạo hàm để khảo sát và sẽ đồ thị hàm số - Lê Phú Cường

+ Xét dấu đạo hàm của mỗi hàm số và điền vào bảng tương ứng.

+ Phân lớp thành hai nhóm, mỗi nhóm giải một câu.

+ Gọi hai đại diện lên trình bày lời giải lên bảng

+ Có nhận xét gì về mối liên hệ giữa tính đơn điệu và dấu của đạo hàm của hai hàm số trên?

+ Rút ra nhận xét chung và cho HS lĩnh hội ĐL 1 trang 6.

 

doc43 trang | Chia sẻ: lethuong715 | Lượt xem: 884 | Lượt tải: 0download
Bạn đang xem trước 20 trang mẫu tài liệu Ứng dụng của đạo hàm để khảo sát và sẽ đồ thị hàm số - Lê Phú Cường, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
 cũ gv nêu lại quy tắc tìm gtln, nn của hs trên đoạn. Yêu cầu học sinh vận dung giải bài tập:
- Cho học sinh làm bài tập: 1b,1c sgk tr 24.
- Nhận xét, đánh giá câu 1b, c.
- Học sinh thảo luận nhóm .
- Đại diện nhóm trình bày lời giải trên bảng. 
Bảng 1
Bảng 2
Hoạt động 2: Cho học sinh tiếp cận với các dạng toán thực tế ứng dụng bài tập tìm gtln, nn của hàm số.
T.G
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
15’
- Cho học sinh làm bài tập 2, 3 tr 24 sgk.
- Nhận xét, đánh giá bài làm và các ý kiến đóng góp của các nhóm.
- Nêu phương pháp và bài giải .
- Hướng dẫn cách khác: sử dụng bất đẳng thức cô si.
- Học sinh thảo luận nhóm.
- Đại diện nhóm lên bảng trình bày bài giải.
- Các nhóm khác nhận xét .
Bảng 3
Bảng 4
Sx = x.(8-x).
- có: x + (8 – x) = 8 không đổi. Suy ra Sx lớn nhất kvck x = 8-x
Kl: x = 4.
Hoạt động 3: Cho học sinh tiếp cận với dạng bài tập tìm gtln , nn trên khoảng.
T.G
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
10’
- Cho học sinh làm bài tập: 4b, 5b sgk tr 24.
- Nhận xét, đánh giá câu 4b, 5b.
- Học sinh thảo luận nhóm.
- Đại diện nhóm lên bảng trình bày bài giải.
Bảng 5
Bảng 6.
Cũng cố (3 phút):
Tìm GTLN và GTNN của hàm số : y = cos2x + cosx – 2 
4. Hướng dẫn học bài ở nhà và làm bài tập về nhà (2’):
- Làm các bài tập con lại sgk.
 Xem bài tiệm cận của đồ thị hàm số tr 27.
§4: TIỆM CẬN CỦA HÀM SỐ
Tiết: 9 – 10 
 I. MỤC TIÊU:
1 .Về kiến thức:
 Nắm được ĐN, phương pháp tìm TCĐ, TCN của đồ thị hs.
2. Về kỷ năng:
 Tìm được TCĐ, TCN của đồ thị hs .
 Tính tốt các giới hạn của hàm số.
Về tư duy, thái độ:
 Rèn luyện tư duy logic, tư duy lý luận.
 Tích cực, chủ động nắm kiến thức, tham gia xây dựng bài.
II. CHUẨN BỊ CỦA GIÁO VIÊN VÀ HỌC SINH:
Chuẩn bị của giáo viên: Giáo án, thước kẻ,bảng phụ, phiếu học tập, đèn chiếu (nếu có) 
Chuẩn bị của học sinh: SGK, Xem nội dung kiến thức của bài học và các nội dung kiến thức có liên quan đến bài học như : bài toán tính giới hạn hs.
III. PHƯƠNG PHÁP: Gợi mở, vấn đáp, giải quyết vấn đề.
IV. TIẾN TRÌNH DẠY HỌC:
	1. Ổn định lớp:
 	2. Kiểm tra bài cũ (5 phút): 
GV nhận xét, đánh giá.
 3. Bài mới:
Hoạt động 1: Tiếp cận định nghĩa TCN.
T.G
Hoạt động của giáo viên
HĐcủa học sinh
Ghi bảng
10’
- có đồ thị (C) như hình vẽ:
Lấy điểm M(x;y) thuộc (C). Quan sát đồ thị, nhận xét khoảng cách từ M đến đt y = -1 khi x và x .
Gv nhận xét khi x và x 
 thì k/c từ M đến đt 
y= -1 dần về 0. Ta nói đt y = -1 là TCN của đồthị (C).
Từ đó hình thành định nghĩa TCN.
 - HS quan sát đồ thị, trả lời.
Bảng 1 (hình vẽ)
Hoạt động 2: Hình thành định nghĩa TCN.
T.G
Hoạt động của giáo viên
HĐcủa học sinh
Ghi bảng
7’
Từ phân tích HĐ1, gọi học sinh khái quát định nghĩa TCN.
- Từ ĐN nhận xét đường TCN có phương như thế nào với các trục toạ độ.
- Từ HĐ1 Hs khái quát .
- Hs trả lời tại chổ.
- Đn sgk tr 28.
Hoạt động 3: Củng cố ĐN TCN.
T.G
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
23’
1. Dựa vào bài cũ, hãy tìm TCN của hs đã cho.
2. Tìm TCN nếu có 
Gv phát phiếu học tập.
- Gv nhận xét.
- Đưa ra nhận xét về cách tìm TCN của hàm phân thức có bậc tử bằng mẫu...
- HS trả lời.
- Hoạt động nhóm.
- Đại diện nhóm trình bày. Các nhóm khác nhận xét.
Hoạt động 4: Tiếp cận ĐN TCĐ. 
7’
- Lấy điểm M(x;y) thuộc (C). Nhận xét k/c từ M đến đt x = 1 khi x và x .
- Gọi Hs nhận xét.
- Kết luận đt x = 1 là TCĐ
- Hs qua sát trả lời
Hoạt động 5: Hình thành ĐN TCĐ.
7’
- Từ phân tích ở HĐ4.
Gọi Hs nêu ĐN TCĐ.
- Tương tự ở HĐ2, đt x = xo có phương như thế nào với các trục toạ độ.
- Hs trả lời.
- Hs trả lời.
- ĐN sgk tr 29
Hoạt động 6: Củng cố ĐN TCĐ. 
16’
- Tìm TCĐ của đồ thị hsố.
- Tìm TCĐ theo phiếu học tập.
- Nhận xét .
- Nêu cách tìm TCĐ của các hs phân thức thông thường.
- Hs trả lời tại chổ.
- Hoạt động nhóm.
- Đại diện nhóm trình bày.
- Các nhóm khác góp ý.
Hoạt động 7: Củng có TCĐ và TCN.
15’
- Tìm TCĐ, TCN nếu có theo phiếu học tập.
- Gọi đại diện nhóm trình bày.
- Nhận xét.
- Thảo luận nhóm.
- Đại diện nhóm lên trình bày.
- Các nhóm khác góp ý.
 4. Cũng cố bài học ( 7’): .
 5 . Hướng dẫn học bài ở nhà và làm bài tập về nhà (2’):
Làm bài tập trang 30 sgk.
. Xem bài khảo sát sự biến thiên và vẽ đồ thị hàm số.
V. PHỤ LỤC:
Phiếu học tập 1: Tìm TCN nếu có của đồ thị các Hs sau:
Phiếu học tập 2: Tìm TCĐ nếu có của đồ thị các hs sau:
Phiếu học tập 3: Tìm các tiệm cận nếu có của các hs sau:
§ 5: KHẢO SÁT SỰ BIẾN THIÊN VÀ
VẼ ĐỒ THỊ CỦA HÀM SỐ BẬC 3
TIẾT :11 - 12
I. 	Mục tiêu:
	Về kiến thức: 	Học sinh nắm vững :
	- Sơ đồ khảo sát hàm số chung
	- Sơ đồ khảo sát hàm số bậc ba
	Về kỹ năng:	Học sinh 
	 - Nắm được các dạng của đồ thị hàm số bậc ba.
	- Tâm đối xứng của đồ thị hàm số bậc ba
	- Thực hiện thành thạo các bước khảo sát hàm số bậc ba.
	- Vẽ đồ thị hàm số bậc ba đúng : chính xác và đẹp.
	Về tư duy và thái độ :	Học sinh thông qua hàm số bậc ba để rèn luyện:
 - Thái độ nghiêm túc, cẩn thận
 - Tính logic , chính xác
 - Tích cực khám phá và lĩnh hội tri thức mới
II/	Chuẩn bị của giáo viên và học sinh:
	 - Giáo viên : Giáo án- Phiếu học tập- Bảng phụ.
	 - Học sinh : Chuẩn bị đọc bài trước ở nhà. Xem lại cách vẽ đồ thị hàm số bậc nhất và hàm số bậc hai.
III/	Phương pháp: 	Thuyết trình- Gợi mở- Thảo luận nhóm
IV/	Tiến trình bài học:
	1/	Ổn định tổ chức: ( 1 phút )
	2/ 	Kiểm tra bài cũ : ( 10 phút )
	 Câu hỏi : Khảo sát sự biến thiên và vẽ đồ thị hàm số bậc hai:
	y= x2 - 4x + 3
	3/	Bài mới:
T/g
Hoạt đông của GV
Hoạt động của HS
Ghi bảng
15’
HĐ1: Ứng dụng đồ thị để khảo sát sự biến thiên và vẽ đồ thị hàm số:y= x2 - 4x +3
CH1 : TX Đ của hàm số
CH2: Xét tính đơn điệu và cực trị của hàm số 
CH3: Tìm các giới hạn
 (x2 - 4x + 3 )
 ( x2 - 4x + 3 )
CH4: Tìm các điểm đặc biệt của đồ thị hàm số
CH5: Vẽ đồ thị
TX Đ: D=R
y’= 2x - 4
y’= 0 => 2x - 4 = 0
 ó x = 2 => y = -1
 = -¥
= +¥
Nhận xét :
 hsố giảm trong ( -¥ ; 2 ) 
 hs tăng trong ( 2 ; +¥ )
hs đạt CT tại điểm ( 2 ; -1 )
Cho x = 0 => y = 3 
Cho y = 0 óx = 1 hoặc x= 3
 Các điểm đặc biệt
 ( 2;-1) ; (0;3) (1;0) ; (3;0)
5’
HĐ2: Nêu sơ đồ khảo sát hàm số
I. Sơ đồ khảo sát hàm số ( sgk)
15’ 
HĐ3: Khảo sát sự biến thiên và vẽ đồ thị hàm số y= x3 + 3x2 -4
CH1: TX Đ
CH2: Xét chiều biến thiên gồm những bước nào?
CH3: Tìm các giới hạn
CH4: lập BBT
CH5: Nhận xét các khoảng tăng giảm và tìm các điểm cực trị
CH6: Tìm các giao điểm của đồ thị với Ox và Oy
CH7: Vẽ đồ thị hàm số
CH8: Tìm y’’
 Giải pt y’’= 0
TX Đ : D=R
 y’ = 3x2 + 6x
 y’ = 0 ó3x2 + 6x = 0
 ó x = 0 => y = -4
 x = -2 => y = 0 
 ( x3 + 3x2 - 4) = - ¥
(y= x3 + 3x2 - 4) = +¥ 
Hs tăng trong (-¥ ;-2 ) và ( 0;+¥) 
Hs giảm trong ( -2; 0 )
Hs đạt CĐ tại x = -2 ; yCĐ=0
Hs đ ạt CT tại x = 0; yCT= -4 
 Cho x = 0 => y = -4
 Cho y = 0 => 
y’’ = 6x +6
y‘’ = 0 => 6x + 6= 0
 ó x = -1 => y = -2 
II. Khảo sát hàm số bậc ba
y = ax3 + bx2 +cx +d ( a 0)
Nd ghi bảng là phần hs đã trình bày
Lưu ý: đồ thị y= x3 + 3x2 - 4 có tâm đối xứng là điểm I ( -1;-2)
hoành độ của điểm I là nghiệm của pt: y’’ = 0
10’
20’
10’
HĐ4: Gọi 1 học sinh lên bảng khảo sát sự biến thiên và vẽ đồ thị của hàm số 
y = - x3 + 3x2 - 4x +2
HĐ5: GV phát phiếu học tập .
Phiếu học tập 1:
KSVĐT hàm số
y= - x3 + 3x2 – 4
Phiếu học tập 2:
KSVĐT hàm số
y= x3 /3 - x2 + x + 1
HĐ6: Hình thành bảng dạng đồ thị hsố bậc ba:
y=ax3+bx2+cx+d (a≠0)
Gv đưa ra bảng phụ đã vẽ sẵn các dạng của đồ thị hàm bậc 3
TXĐ: D=R
y’= -3x2 +6x - 4
y’ < 0, 
; 
Đ Đ B: (1; 0); (0; 2)
HS chia làm 2 nhóm tự trình bày bài giải.
Hai nhóm cử 2 đại diện lên bảng trình bày bài giải.
Hs nhìn vào các đồ thị ở bảng phụ để đưa ra các nhận xét.
Phần ghi bảng là bài giải của hs sau khi giáo viên kiểm tra chỉnh sửa.
Vẽ bảng tổng kết các dạng của đồ thị hàm số bậc 3
4. Củng cố: Gv nhắc lại các bước KS VĐT hàm số và dạng đồ thị hàm số bậc 3.
5. Dặn dò: Hướng dẫn hs về nhà làm bài tập 1 trang 43.(5’)
BÀI TẬP KHẢO SÁT SỰ BIẾN THIÊN 
và VẼ ĐỒ THỊ HÀM SỐ BẬC BA
Tiết :13
 I. Mục tiêu :
 + Kiến thức : 
 Biết sơ đồ tổng quát để khảo sát hàm số bậc 3 : Tìm tập xác định ,chiều biến 
 thiên , tìm cực trị , lập bảng biến thiên , tìm điểm đặc biệt , vẽ đồ thị 
 + Kỹ năng :
 Biết vận dụng đạo hàm cấp 1 để xét chiều biến thiên và tìm điểm cực trị của
 hàm số , biết vẽ đồ thị hàm số bậc 3
 + Tư duy và thái độ :
 Vẽ đồ thị cẩn thận , chính xác , Nhận được dạng của đồ thị
 Biết được tâm đối xứng của đồ thị hàm số bậc 3,vẽ chính xác đồ thị đối xứng 
 II. Chuẩn bị của giáo viên và học sinh :
 + Giáo viên : 
 Giáo án , thước kẻ , phấn màu , bảng phụ (nếu có )
 + Học sinh : 
 Soạn bài tập về khảo sát và vẽ đồ thị hàm số bậc 3 
 III. Phương pháp :
 + Gợi mở , hướng dẫn 
 + Học sinh lên bảng trình bày bài giải
 + Hoạt động nhóm 
 IV. Tiến trình bài dạy :
 1. Ổn định tổ chức : ( Sĩ số , học sinh vắng )
 2. Kiểm tra bài cũ : ( 5phút )
 a. Phát biểu sơ đồ khảo sát sự biến thiên và vẽ đồ thị hàm số 
 b. Áp dụng : Khảo sát sự biến thiên và vẽ dồ thị hàm số y = x3 – 3x
 3. Bài mới : 
 Hoạt động 1.
Tg
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
3’
3’
HĐTP1
Gọi học sinh nêu tập xác định của hàm số
HĐTP2
Tính đạo hàm y’ và tìm nghiệm của đạo hàm
 y’ = 0
Dựa vào dấu của đạo hàm y’ nêu tính đồng biến và nghịch biến của hàm số
HĐTP1
Phát biểu tập xác định của hàm số
HĐTP2
Phát biểu đạo hàm y’ và tìm nghiệm của đạo hàm
 y’ = 0
Phát biểu dấu của đạo hàm y’ nêu tính đồng biến và nghịch biến của hàm số
1.Bài 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số y = 2 + 3x – x3 
a. TXĐ : R
b. Sự biến thiên :
* Chiều biến thiên y' = 3 – 3x2
 y' = 0 
 Trên khoảng và 
 y' âm nên hàm số nghịch biến 
 Trên khoảng ( – 1;1) y' dương 
 nên hàm số đồng biến 
Tg
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
4’
5’
5’
HĐTP3
Dựa vào chiều biến thiên
Tìm điểm cực đại và cực tiểu của đồ thị hàm số
Tính các giới hạn tại vô
cực
HĐTP4
Dựa vào chiều biến thiên và điểm cực trị của hàm số hãy lập bảng biến thiên 

File đính kèm:

  • docchương 1.GT 12 CB.doc