Tuyển tập các đề thi thử Đại học, Cao đẳng trên tạp chí Toán học và Tuổi trẻ qua các năm
Câu IV: (2 điểm)
1. Cho hai hình chóp SABCD và S ABCD ' có chung đáy là hình vuông ABCD cạnh a. Hai đỉnh S và
S ' nằm về cùng một phía đối với mặt phẳng(ABCD) , có hình chiếu vuông góc lên đáy lần lượt là
trung điểm H của AD và trung điểm K của BC. Tính thể tích phần chung của hai hình chóp, biết
rằng SH SK h = = .
2. Trên mặt phẳng tọa độ cho đường tròn (C) có phương trình x y 2 2 + = 9 . Tìm m để trên đường
thẳng y m = có đúng 4 điểm sao cho từ mỗi điểm đó kẻ được đúng hai tiếp tuyến đến (C) và mỗi
cặp tiếp tuyến đó tạo thành một góc 45
2. Tính tích phân: 1 3 1 0 xI e dx+= ∫ Câu III: (2 điểm) 1. Giải phương trình: 2log 23 1x x= − 2. Giải phương trình: ( )2 2 2 1cos cos sin 1 3 3 2 x x x pi pi + + + = + Câu IV: (2 điểm) 1. Trong mặt phẳng vối hệ trục tọa độ vuông góc Oxy cho parabol (P): 2y x= và điểm M(1;-1). Giả sử A, B là hai điểm phân biệt, khác M, thay đổi trên (P) sao cho MA và MB luôn vuông góc với nhau. Chứng minh rằng đường thẳng AB luốn đi qua 1 điểm cố định. 2. Trong không gian với hệ tọa độ vuông góc Oxyz cho điểm A(1; -1; 1) và hai đường thẳng theo thứ tự có phương trình: ( )1 : 1 2 3 x t d y t z t = − = − + = ; ( )2 3 3 0: 2 1 0 x y z d x y + − + = − + = Chứng minh rằng ( )1d , ( )2d và A cùng nằm trong một mặt phẳng. Câu V: (2 điểm) 1. Có bao nhiêu số tự nhiên chẵn gồm 5 chứ số đôi một khác nhau sao cho trong đó khống có mặt chứ số 2. 2. Tìm giá trị nhỏ nhất của biểu thức 3 3 3 , x y zQ y z x z x y = + + + + + với x, y, z là các số dương thỏa điều kiện: 6x y z+ + ≥ . ------------------ HẾT ------------------- w w w . v i e t m a t h s . c o m w w w . v i e t m a t h s . c o m Tuyển tập các đề thi thử Đại học, cao đẳng trên tạp chí Toán học và Tuổi trẻ qua các năm Tập thể lớp 12T – THPT Thị xã Cao Lãnh – Niên khoá 2006-2009 – GVCN: Thầy Nguyễn Đình Huy ĐÁP SỐ HOẶC HƯỚNG DẪN GIẢI ĐỀ SỐ 2-2006: Câu I: Các bạn tự giải. Câu II: 1. Đáp số: m > -1. 2. Đáp số: I = 22 3 e . Câu III: 1. Đáp số: x = 2. 2. Đáp số:. 2 6 x kpi pi= + ; 5 2 6 x kpi pi= + ; x kpi= ( )k Z∈ . Câu IV: Các bạn tự giải. Câu V: 1. Đáp số: 1680 + 4410 = 6090. 2. Hướng dẫn: Áp dụng BĐT Cauchy cho 3 số dương. Q min = 6, khi x = y = z = 2. ------------------ HẾT ------------------- w w w . v i e t m a t h s . c o m w w w . v i e t m a t h s . c o m Tuyển tập các đề thi thử Đại học, cao đẳng trên tạp chí Toán học và Tuổi trẻ qua các năm Tập thể lớp 12T – THPT Thị xã Cao Lãnh – Niên khoá 2006-2009 – GVCN: Thầy Nguyễn Đình Huy BỘ GIÁO DỤC VÀ ĐÀO TẠO TẠP CHÍ TOÁN HỌC VÀ TUỔI TRẺ NĂM 2006 ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG SỐ 3 Môn thi: TOÁN Thời gian làm bài: 180 phút Câu I: (2 điểm) 1. Khảo sát và vẽ đồ thị hàm số: 3 3 3y x x= − + 2. Tính đạo hàm cấp n của hàm số: 2 2004 5 6 xy x x = − + . Câu II: (2 điểm) 1. Chứng minh rằng trong mọi tam giác ABC ta luôn có : tan 3 tan 3 tan 3 3 3 3 A B C − − − 4 tan tan tan 3 3 3 3 A B C = + + − . 2. Giải phương trình: 2 2 2 2 sin sin 2 2 sin 2 sin x x x x + = . Câu III: (2 điểm) 1. Tìm giới hạn: 3 1 3lim . 1 1x x x→∞ − − − 2. Tính tích phân: 1 2 2 0 . 4 x dx x + ∫ Câu IV: (3 điểm) 1. Cho hai đường thẳng: 1 2 2 4( ) : , 1 1 1 8 6 10( ) : , 2 1 1 x y zd x y zd − + = = − − + − − = = − Trong hệ tọa độ vuông góc Oxyz. Lập phương trình đường thẳng (d) cắt 1( )d , ( )2d và (d) song song với trục Ox. 2. Cho tứ diện OABC với OA = a, OB = b, OC = c và OA, OB, OC đôi một vuông góc với nhau. Tính diện tích tam giác ABC theo a, b, c. Gọi , ,α β γ là góc giữa OA, OB, OC với mặt phẳng (ABC). Chứng minh rằng: 2 2 2sin sin sin 1.α β γ+ + = Câu V: (1 điểm) Trong mặt phẳng với hệ trục tọa độ vuông góc Oxy cho parabol (P): 2y x= ta lấy A(-1;1), B(3;9). Gọi (D) là miền phẳng giới hạn bởi đoạn AB và (D). Chứng minh rằng với mọi M bất kì thuộc cung nhỏ AB của (P) thì 3 4 ABM D S S ≤ , ở đó DS là diện tích của miền (D), ABMS là diện tích .ABM∆ ------------------ HẾT ------------------- w w w . v i e t m a t h s . c o m w w w . v i e t m a t h s . c o m Tuyển tập các đề thi thử Đại học, cao đẳng trên tạp chí Toán học và Tuổi trẻ qua các năm Tập thể lớp 12T – THPT Thị xã Cao Lãnh – Niên khoá 2006-2009 – GVCN: Thầy Nguyễn Đình Huy ĐÁP SỐ HOẶC HƯỚNG DẪN GIẢI ĐỀ SỐ 3-2006: Câu I: 1. Các bạn tự giải. 2. Đáp số: ( ) 3 22004. 1 ! . 3 2 nny n x x = − − − − Câu II: 1. Các bạn tự giải. 2. Đáp số: 2 3 2 2 , , 3 x k x k k Z pi pi pi pi = ± + = ± + ∈ Câu III: 1. Đáp số: 1.− 2. Đáp số: 5 1 52ln 2 2 I + = − . Câu IV: 1. Đáp số: 2 2 2 2 2 2 1 . 2ABC S a b b c c a= + + 2. Các bạn tự giải. Câu V: Các bạn tự giải. ------------------ HẾT ------------------- w w w . v i e t m a t h s . c o m w w w . v i e t m a t h s . c o m Tuyển tập các đề thi thử Đại học, cao đẳng trên tạp chí Toán học và Tuổi trẻ qua các năm Tập thể lớp 12T – THPT Thị xã Cao Lãnh – Niên khoá 2006-2009 – GVCN: Thầy Nguyễn Đình Huy BỘ GIÁO DỤC VÀ ĐÀO TẠO TẠP CHÍ TOÁN HỌC VÀ TUỔI TRẺ NĂM 2006 ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG SỐ 4 Môn thi: TOÁN Thời gian làm bài: 180 phút Câu I: (2 điểm) Cho hàm số 2 2 5 1 x kxy x − + − = − (k là tham số). 1. Khảo sát và vẽ đồ thị của hàm số (1) với k=1. 2. Với giá trị nào của tham số k thì hàm số có cực đại, cực tiểu và các điểm cực đại, cực tiểu nằm về hai phía của đường thẳng (l): 2 0x y− = . Câu II: (2 điểm) 1. Giải phương trình: ( )212 cos cos 3 x x pi+ + 2 8 1 s in2 3cos sin . 3 2 3 x x x pi = + + + + 2. Với giá trị nào của tham số k thì hàm số 2 2 1lg 3 1 x kxy x x − + = − + + xác định với mọi x. Câu III: (3 điểm) 1. Cho hình chóp tứ giác đều S.ABCD có cạnh dáy bằng đường cao và bằng a. Tính khoảng cách giữa hai đường thẳng SC và AB. 2. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ( )∆ có phương trình : 1 22 1 3 x y z− − = = − và mp(Q) đi qua điểm M(1; 1; 1) và có vectơ pháp tuyến ( )2; 1; 2n = − − . Tìm tọa độ các điểm thuộc( )∆ sao cho khoảng cách từ mỗi điểm đó đến mp(Q) bằng 1. Câu IV: (2 điểm) 1. Xác định hệ số của số hạng chứa 4a trong khai triển nhị thức Newton 2 2 n a a − (với 0a ≠ ), biết rằng tổng các hệ số của 3 số hạng đầu tiên trong khai triển đó bằng 97. 2. Tính tích phân: 2 1 ln ln . 1 ln e xI x dx x x = + + ∫ Câu V: (1 điểm) Cho đa thức: ( ) ( )2f x mx n p x m n p= + − + + + Với m, n, p là ba số thực thỏa mãn: ( )( ) 0m p m n p+ + + < . Chứng minh rằng: ( )2 2 2 2 .n p m m n p np+ > + + + ------------------ HẾT ------------------- w w w . v i e t m a t h s . c o m w w w . v i e t m a t h . c o m Tuyển tập các đề thi thử Đại học, cao đẳng trên tạp chí Toán học và Tuổi trẻ qua các năm Tập thể lớp 12T – THPT Thị xã Cao Lãnh – Niên khoá 2006-2009 – GVCN: Thầy Nguyễn Đình Huy ĐÁP SỐ HOẶC HƯỚNG DẪN GIẢI ĐỀ SỐ 4-2006: Câu I: 1. Các bạn tự giải. 2. Đáp số 2 2 6 2 2 6k− − < < − + Câu II: 1. Đáp số ( )2 2 x k k Zpi pi= + ∈ 2. Đáp số: 5 1.k− < < Câu III: 1. Đáp số: 2 5 5 ad = 2. Đáp số: ( )1 9; 2;12A − ; 2 ( 3;4; 6)A − − . Câu IV: 1. Đáp số: ( )448 2 1120.C − = 2. Đáp số: ( )2 1 2 .3I e= − + + Câu V: Các bạn tự giải. ------------------ HẾT ------------------- w w w . v i e t m a t h s . c o m w w w . v i e t m a t h s . c o m Tuyển tập các đề thi thử Đại học, cao đẳng trên tạp chí Toán học và Tuổi trẻ qua các năm Tập thể lớp 12T – THPT Thị xã Cao Lãnh – Niên khoá 2006-2009 – GVCN: Thầy Nguyễn Đình Huy BỘ GIÁO DỤC VÀ ĐÀO TẠO TẠP CHÍ TOÁN HỌC VÀ TUỔI TRẺ NĂM 2006 ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG SỐ 5 Môn thi: TOÁN Thời gian làm bài: 180 phút Câu I: (2 điểm) Cho hàm số 2 1 1 x xy x − + = − (C) 1. Khảo sát và vẽ đồ thị (C) của hàm số. 2. Viết phương trình đường thẳng (d) đi qua điểm 30; 2 A − và cắt (C) tại hai điểm phân biệt B, C thỏa mãn: 2 0AB AC+ = . Câu II: (2 điểm) 1. Giải hệ phương trình: 2 2 3 1 4 2 3 x xy y x y + + = + + = 2. Giải bất phương trình: ( )( ) 4 2 2 2 1 0. log 2 25 x x x x − − + ≥ − − Câu III: (2,5 điểm) Cho hình hộp chữ nhât ABCD.A’B’C’D’ có thể tích bằng 1. Gọi I, J, K lần lượt là trung điểm của các đoạn thằng AA’, CD, A’D’. 1. Tính thể tích khối tứ diện BIJK. 2. Biết BK vuông góc với mặt phẳng (A’C’D). Tính độ dài các cạnh của hình hộp. 3. Tìm giá trị lớn nhất của khoảng cách giữa hai đường thẳng CI và A’J. Câu IV: (2 điểm) 1. Tính các góc của tam giác ABC, biết 2A = 3B và 2.a b= 2. Tính 32 4 2 0 cos . cos 3cos 3 xI dx x x pi = − +∫ Câu V: (1,5 điểm) Trong một trường học có 5 em khối 12; 3 em khối 11 và 2 em khối 10 là các học sinh xuất sắc. Hỏi có bao nhiêu cách cử 5 em học sinh xuất sắc của trường đó tham gia một đoàn đại biểu sao cho mỗi khối có ít nhất 1 em? ------------------ HẾT ------------------- w w w . v i e t m a t h s . c o m w w w . v i e t m a t h s . c o m Tuyển tập các đề thi thử Đại học, cao đẳng trên tạp chí Toán học và Tuổi trẻ qua các năm Tập thể lớp 12T – THPT Thị xã Cao Lãnh – Niên khoá 2006-2009 – GVCN: Thầy Nguyễn Đình Huy ĐÁP SỐ HOẶC HƯỚNG DẪN GIẢI ĐỀ SỐ 5-2006: Câu I: 1. Các bạn tự giải. 2. Đáp số: ( ) 3 . 2 : 5 3 . 4 2 y d y x = − − = − Câu II: 1. Đáp số ( ) ( ) ( ); : 1; 2 & 2;1 .x y 2. Đáp số: 5; 4 0; 0 3; 4 5 . x x x x < − − < < < ≤ < < Câu III: 1. Đáp số: 5 . 48 V = 2. Đáp số: 6 1 . 2 2 b a c= = = 3. Đáp số: max 3 1 3 144 h = khi 3 1 . 2 2 3 12 a c b = = = Câu IV: 1. Đáp số: 0 0 045 ; 30 ; 105 .A B C= = = 2. Đáp số: ln 3.I = Câu V: Đáp số: Tổng số cách là 175. ------------------ HẾT ------------------- w w w . v i e t m a t h s . c o m w w w . v i e t m a t h s . c o m Tuyển tập các đề thi thử Đại học, cao đẳng trên tạp chí Toán học và Tuổi trẻ qua các năm Tập thể lớp 12T – THPT Thị xã Cao Lãnh – Niên khoá 2006-2009 – GVCN: Thầy Nguyễn Đình Huy BỘ GIÁO DỤC VÀ ĐÀO TẠO TẠP CHÍ TO
File đính kèm:
- Thu suc truoc ki thiTHTT.pdf