Tổng hợp kiến thức Phương trình - Bất phương trình - Hệ phương trình mũ và Logarit
Chú ý : 1) Với bài toán trên ta thấy (2) là Bất phương trình một ẩn nên ta tìm cách giải (2)
và ta dư ñoán bài toán thỏa mãn tại những ñiểm biên của y.
2) Ta có thể giải (2) bằng cách phá bỏ dấu trị tuyệt ñối ta cũng tìm ñược nghiệm của (2) là
− ≤ ≤ 3 y 0, tuy nhiên cách làm vậy cho ta lời giải dài.
6) x 5 x 17 x 7 x 332 0,25.128 + + − − = ( x=10). 7) x xx x= (x=1;x=4) 8) 2x 2 x 3 9 9 . 4 16 16 − = 9) x 1x x x2 . 27 . 5 180+ = . 10) 2 2 2 x 3x 2 x 6x 5 2x 3x 74 4 4 1− + + + + ++ = + . Bài 3: Giải các bất phương trình sau: 1) 2x 4x x 43 2− −≤ 2) 10 3 10 3 3 1 1 3+ < − − − + +) ( ) x x x x 3) 22 x x(4x 2x 1) 1−+ + ≤ 4) 22x x 1| x 1| 1+ −− > 5) 22 2x 3 2 x(x x 1) (x x 1)−+ + < − + 6) x x 2 x x 2.3 2 1 3 2 + − ≤ − 7) 2 x |x 1| x 2x 13 3 − − − ≥ 8) 2 2 22 x 1 x 2 x4x x.2 3.2 x .2 8x 12++ + > + + Bài 4: Tìm m ñể phương trình sau có nghiệm duy nhất 2|x m 2| 3m 1 2m 1 5 − + − = + . Bài 5: Tìm m ñể phương trình 2|x 4x 3| 4 21 m m 1 5 − + = − + có bốn nghiệm phân biệt. Phương trình – bất phương trình – hệ phương trình mũ và Lôgarit Nguyễn Tất Thu – Trường Lê Hồng Phong – Biên Hòa 5 2) Các phương pháp giải PT – BPT mũ: 1. Phương pháp ñặt ẩn phụ Cũng như PT – BPT vô tỉ và lượng giác, ñể giải PT – BPT mũ ta có thể dùng phương pháp ñặt ẩn phụ. Tức là ta thay thế một biểu thức chứa hàm số mũ bằng một biểu thức chứa ẩn phụ mà ta ñặt và chuyển về những phương trình – bất phương trình ma ta ñã biết cách giải. Phương pháp ñặt ẩn phụ rất phong phú và ña dạng, ñể có ñược cách ñặt ẩn phụ phù hợp thì ta phải nhận xét ñược quan hệ cảu các cơ số có trong phương trình. Ví dụ 1: Giải phương trình: 1) x x2.16 15.4 8 0− − = 2) 2 cos 2x cos x4 4 3 0+ − = . Giải: 1) Nhận xét cơ số ta thấy 16 chính là bình phương của 4, tức là ta có: x 2 x x 216 (4 ) (4 )= = Nên ta ñặt: x x x 2 2t 4 , t 0 16 (4 ) t= > ⇒ = = . Phương trình trở thành: 2 2x 3 32t 15t 8 0 t 8 2 2 x 2 − − = ⇔ = ⇔ = ⇔ = . 2) Vì số mũ của hai lũy thừa trong phương trình là hai hàm số lượng giác và hai hàm số này biểu thị qua nhau bởi hệ thức 2cos2x 2cos x 1= − nên ta chuyển số mũ của hai lũy thừa ñó về một hàm lượng giác. Ta có phương trình 2 22 cos x cos x4 4.4 12 0⇔ + − = . ðặt 2cos xt 4 , t 0= > , ta có phương trình : 2t 4t 12 0 t 2+ − = ⇔ = 22 cos x 22 2 2cos x 1 cos2x 0 x k 4 2 pi pi ⇔ = ⇔ = ⇔ = ⇔ = + . Nhận xét: Ta có dạng tổng quát của bài toán trên là: f (x)F(a ) 0= .Với dạng này ta ñặt f (x)t a , t 0= > và chuyển về phương trình F(t) 0= , giải tìm nghiệm dương t của phương trình, từ ñó ta tìm ñược x. Ta thường gặp dạng: 2f (x) f (x)m.a n.a p 0+ + = . Với BPT ta cũng làm tương tự. Ví dụ 2: Giải các bất phương trình: 1) x 1 x2 2 1−− < 2) 2 2 x 2x x x 2x x 19 7.3 2− − − − −− ≤ Giải: 1) BPT x x 22 1 2 ⇔ − < . ðặt xt 2 , t 1= ≥ , ta có: 2 x2t 1 t t 2 0 1 t 2 2 2 0 x 1 t − < ⇔ − − < ⇔ ≤ < ⇔ < ⇔ ≤ < . Phương trình – bất phương trình – hệ phương trình mũ và Lôgarit Nguyễn Tất Thu – Trường Lê Hồng Phong – Biên Hòa 6 2) BPT 2 2x 2x x x 2x x3.9 7.3 6− − − −⇔ − ≤ . ðặt 2x 2x xt 3 , t 0− −= > , ta có bất phương trình : 2 2 23t 7t 6 0 t 3 x 2x x 1 x 2x x 1− − ≤ ⇔ ≤ ⇔ − − ≤ ⇔ − ≤ + 2 2 2 x 2x 0 x 0 V x 2 1 x 1 0 x 1 x 0 V x 2 4 x 1/ 4x 2x (x 1) − ≥ ≤ ≥ ⇔ + ≥ ⇔ ≥ − ⇔ − ≤ ≤ ≥ ≥ − − ≤ + . Ví dụ 3: Giải các bất phương trình : 1) 4 4 1 x x x x22.3 9 9 ++ + ≥ 2) 2x x x 4 x 43 8.3 9.9 0+ + +− − > . Giải: 1) Trong bất phương trình Chia hai vế BPT cho x9 ta ñược: 4 4x x x x2.3 3.9 1− −+ ≥ . ðặt 4 x xt 3 , t 0−= > , ta có BPT: 42 x x 113t 2t 1 0 t 3 3 3 − −+ − ≥ ⇔ ≥ ⇔ ≥ 4 4 4 1 5 7 3 5x x 1 x x 1 0 x 0 x 2 2 + + ⇔ − ≥ − ⇔ − − ≤ ⇔ ≤ ⇔ ≤ ≤ . 2) Chia hai vế BPT cho x 49 + ta ñược: 2(x- x+4) x x 43 8.3 9 0− +− − > ðặt x x 4t 3 , t 0− += > , ta có: 2 x x 4 2t 8t 9 0 t 9 3 3− +− − > ⇔ > ⇔ > 2 2 x 2 0 x 2 x x 4 2 x 2 x 4 x 0 (x 2) x 4 x 3x 0 + > > − − + > ⇔ + > + ⇔ ⇔ ⇔ > + > + + > . Ví dụ 4: Giải các phương trình sau: 1) 2 2 x x 2 x x2 2 3− + −− = 2) 3x x 3(x 1) x 1 122 6.2 1 2 2− − − + = . Giải: 1) PT 2 2 22x x 2(x x) x xx x 42 3 2 3.2 4 0 2 − − − − ⇔ − = ⇔ − − = . ðặt 2x xt 2 , t 0−= > . Ta có: 2 2 x 1 t 3t 4 0 t 4 x x 2 0 x 2 = − − − = ⇔ = ⇔ − − = ⇔ = . 2) ðặt xt 2 , t 0= > ta có: 3 33 3 8 12 8 2 t 6t 1 (t ) 6(t ) 1 0 t tt t − − + = ⇔ − − − − = . ðặt 3 2 2 23 2 2 8 2 4 2 2y t t t t 2 t (t ) 6 y(y 6) t t t tt t = − ⇒ − = − + + = − − + = + Phương trình – bất phương trình – hệ phương trình mũ và Lôgarit Nguyễn Tất Thu – Trường Lê Hồng Phong – Biên Hòa 7 Nên ta có phương trình : 3 22y 1 0 y 1 t 1 t t 2 0 t 2 x 1 t − = ⇔ = ⇔ − = ⇔ − − = ⇔ = ⇔ = . Ví dụ 5: Giải phương trình : 1) x x(5 24) (5 24) 10+ + − = 2) x x (7 4 3) 3(2 3) 2 0+ − − + = . Giải: Nhận xét hai cơ số ta thấy: x x(5 24)(5 24) 1 (5 24) (5 24) 1+ − = ⇒ + − = . Do vậy nếu ñặt x x 1 t (5 24) , t 0 (5 24) t = + > ⇒ − = và phương trình ñã cho trở thành 21t 10 t 10t 1 0 t 5 24 t + = ⇔ − + = ⇔ = ± . Từ ñây ta tìm ñược x 1= ± . Nhận xét: Bài toán trên có dạng tổng quát như sau: f (x) f (x) m.a n.b p 0+ + = , trong ñó a.b 1= . ðặt f (x) f (x) 1t a , t 0 b t = > ⇒ = . 2) Ta có: 27 4 3 (2 3)+ = + và (2 3)(2 3) 1− + = nên ta ñặt xt (2 3) , t 0= + > ta có phương trình : 2 3 23t 2 0 t 2t 3 0 (t 1)(t t 3) 0 t 1 t − + = ⇔ + − = ⇔ − + + = ⇔ = x(2 3) 1 x 0⇔ + = ⇔ = . Ví dụ 6: Giải các phương trình sau: 1) x x x6.9 13.6 6.4 0− + = 2) 2 2 2 x 2x 1 2x x 2x x 19 34.15 25 0− + + − − +− + = Giải: 1) Nhận xét các cơ số ta có: 2 29 3 ;4 2 ;6 3.2= = = , do ñó nếu ñặt x xa 3 ,b 2= = , ta có: 2 26a 13ab 6b 0− + = ñây là phương trình ñẳng cấp bậc hai ñối với a,b. Chia hai vế PT cho b2 và ñặt x a 3 t b 2 = = ta ñược: 2 3 26t 13t 6 0 t , t 2 3 − + = ⇔ = = . Từ ñây ta có: x 1=± . Nhận xét: Ta có dạng tổng quát của phương trình trên là: 2f (x) f (x) 2f (x) m.a n.(a.b) p.b 0+ + = . Chia 2 vế phương trình cho 2f (x)b và ñặt f (x)at ( ) , t 0 b = > . Ta có PT: 2mt nt p 0+ + = . 2) PT 2 2 22x x 2x x 2x x9.9 34.15 25.25 0− − −⇔ − + = Phương trình – bất phương trình – hệ phương trình mũ và Lôgarit Nguyễn Tất Thu – Trường Lê Hồng Phong – Biên Hòa 8 2 22(2x x ) 2x x 23 39 34 25 0 9t 34t 25 0 5 5 − − ⇔ − + = ⇔ − + = (Với 22x x3 t , t 0 5 − = > ). 25 t 1; t 9 ⇔ = = . * 22x x 23t 1 1 2x x 0 x 0;x 2 5 − = ⇔ = ⇔ − = ⇔ = = . * 22x x 2 225 3 3t x 2x 2 0 x 1 3 9 5 5 − − = ⇔ = ⇔ − − = ⇔ = ± . Ví dụ 7:Giải phương trình: 1) x x 3x 1125 50 2 ++ = 2) x x x x3.8 4.12 18 2.27 0+ − − = . Giải: 1) PT 3x 2x 3x 2x x 3x 5 55 5 .2 2.2 2 0 2 2 ⇔ + = ⇔ + − = ðặt x5 t , t 0 2 = > ta ñược: 3 2 2t t 2 0 (t 1)(t 2t 2) 0 t 1 x 0+ − = ⇔ − + + = ⇔ = ⇔ = . Vậy phương trình có nghiệm x 0= . 2) PT 3x 2x x2 2 23 4. 2 0 3 3 3 ⇔ + − − = . ðặt x2 t , t 0 3 = > ta ñược: 3 2 2 23t 4t t 2 0 (t 1)(3t t 2) 0 t x 1 3 + − − = ⇔ + + − = ⇔ = ⇔ = . Ví dụ 8: Tìm m ñể các phương trình sau có nghiệm 1) x x4 5.2 m 0+ + = 2) x x7 3 5 7 3 5( ) m( ) 8 2 2 + − + = . Giải: 1) ðặt xt 2 , t 0.= > Phương trình trở thành: 2t 5t m+ = − (1). Suy ra phương trình ñã cho có nghiệm (1)⇔ có nghiệm t 0> . Với t 0> ta có hàm 2f (t) t 5t 0= + > và liên tục nên phương trình ñã cho có nghiệm m 0 m 0⇔ − > ⇔ < . 2) ðặt : x 7 3 5 t , t 0 2 + = > , ta có phương trình : 2mt 8 t 8t m t + = ⇔ − = − (2) Suy ra phương trình ñã cho có nghiệm (1)⇔ có nghiệm t 0> . Xét hàm số 2f (t) t 8t= − với t 0> , ta có: 2f (t) (t 4) 16 16= − − ≥ − nên phương trình ñã cho có nghiệm m 16 m 16− ≥ − ⇔ ≤ . Phương trình – bất phương trình – hệ phương trình mũ và Lôgarit Nguyễn Tất Thu – Trường Lê Hồng Phong – Biên Hòa 9 Ví dụ 9: Tìm m ñể bất phương trình sau có nghiệm: 1) x x9 m.3 1 0+ + ≤ 2) 2x x x 4 x 43 m.3 9.9 0+ + +− − < . Giải: 1) ðặt xt 3 , t 0= > . Bất phương trình trở thành: 2 2 t 1t mt 1 0 m t + + + ≤ ⇔ ≤ − (3). Bất phương trình ñã cho có nghiệm ⇔ (3) có nghiệm t 0 t 0 Min f (t) m > > ⇔ ≤ − (*). Xét hàm số 2t 1f (t) t + = với t 0> . Ta có 2 2 t 1f '(t) f '(t) 0 t 1 t − = ⇒ = ⇔ = . Từ ñây suy ra t 0 Minf (t) f (1) 2 (*) m 2 m 2 > = = ⇒ ⇔ − ≥ ⇔ ≤ − . Chú ý : BPT : ( )f (x) k f(x) k≤ ≥ có nghiệm trên D D D Min f (x) k (Max k)⇔ ≤ ≥ 2) Chia hai vế của BPT cho x x 43 + + ta ñược: x x 4 x 4 x 93 9.3 m 0 f (t) t m t − + + − − − < ⇔ = − < (**), trong ñó x x 4t 3 − += Xét hàm số u(x) x x 4= − + với x 4≥ − . Ta có 1 1 15 15 17 u '(x) 1 u '(x) 0 x 4 x u(x) u( ) 4 4 4 42 x 4 = − ⇒ = ⇔ + = ⇔ = − ⇒ ≥ − = − + Suy ra 17 4t 3 − ≥ . Xét hàm số f(t) trên 4 1D [ ; ) 81 3 = +∞ , ta có f(t) là hàm ñồng biến nên 4 4D 1 1 729 3Min f (t) f ( ) 81 3 81 3 − = = ⇒BPT ñã cho có nghiệm ⇔ (**) có nghiệm t D∈ 4D 1 729 3 m Min f(t) 81 3 − ⇔ > = . Chú ý : 1) Ở bài toán trên chúng ta thường mắc sai lầm là khi ñặt t ta cho rằng ñiều kiện của t là t 0> ! Dẫn ñến ñiều này là do chúng ta không xác ñịnh tập giá trị của u(x) và lúc ñó ta sẽ cho lời giải sai!. 2) BPT D D f (x) k (f (x) k) x D Minf (x) k (Max f (x) k)≥ ≤ ∀ ∈ ⇔ ≥ ≤ . Ví dụ 10: Tìm tất cả các giá trị của tham số a sao cho bất phương trình sau ñược nghiệm ñúng với mọi x 0≤ : x 1 x xa.2 (2a 1)(3 5) (3 5) 0+ + + − + + < . Giải: BPT x x x2a.2 (2a 1)(3 5) (3 5) 0⇔ + + − + + < Phương trình – bất phương trình – hệ phương trình mũ và Lôgarit Nguyễn Tất Thu – Trường Lê Hồng Phong – Biên Hòa 10 x x 3 5 3 5(2a 1) 2a 0 2 2 + − ⇔ + + + < ðặt x x 3 5 1 3 5 t ,0 t 1 x 0 2 t 2 + − = < ≤ ∀ ≤ ⇒ = và bất phương trình trở thành: 2 21 t 1t (2a 1) 2a 0 t 1 2a(t 1) 2a ( ) t t 1 + + + + < ⇔ + < − + ⇔ < − + I Xét hàm số 2t 1f (t)
File đính kèm:
- TONG HOP KIEN THUC PT BPT MU Logarit phan 1.pdf