Tổng hợp kiến thức Phương trình - Bất phương trình - Hệ phương trình mũ - Hệ bất phương trình mũ
1. 8 x +18 x = 2.27 x
2. 6.9 x -13.6 x + 6.4 x = 0
3. 4x = 2.14x + 3.49x.
4. 8 x3-1 +18 x3-1 = 2.27 x3-1
5. 3.4 x - 2.6 x = 9 x
6. 2.4 x2 +1 + 6 x2 +1 = 9 x 2 +1
7. 3.16 x + 2.81x = 5.36 x
8. 25 x +10 x = 2 2 x+1 (HVNH’98)
9. 125 x + 50 x = 23 x+1 (QGHN’98)
10. 42 2 x - 6 x = 18.32 x
11. x x x
1 1 1
49 - 35 = 25
12. 32 x+4 + 45.6 x - 9.2 2 x+2 = 0
13. 6.9 13.6 6.4 0
1 1 1
x - x + x = (TS’97)
14. 4.3 9.2 5.6 2
x
x x
- = x x x
1 1 1
2.4 6 3.9
- - -
- =
15. 2 x-1(2 x + 3 x-1) = 9 x-1
16. 2.81x - 7.36 x + 5.16 x = 0
17. 2.14 x + 3.49 x - 4 x ³ 0 (GT’96)
18. 4 x - 2.6 x = 3.9 x (§HVH’98)
19. 4lg(20x) - 6 lg x = 2.3lg(100x 2 ) (BKHN’99)
) Û 1133 log23 log3log =++ xxx Û 11log3 1 log 2 1 log 333 =++ xxx Ûlog3x = 6 Û x = 3 6 = 729. V Ëy ph-¬ng tr×nh ®· cho cã nghiÖm lµ x = 729. B µi tËp t-¬ng tù 1. 1)(loglog 23 =x 2. 0)3(log 222 =-+ xx 3. log2(x 2 – 4x – 5) £ 4 4. log12(6x 2 – 4x – 54) £ 2 5. ( ) 05loglog 24 2 1 >-x 6. log3(5x 2 + 6x + 1) £ 0. 7. ( ) 441log 2 2 1 £--+ xx 8. ( ) 012log 2 5 1 £+-- xx 9. 1 3 1 9log 23 -³÷ ø ö ç è æ +-- xx 10. log2(25 x + 3 –1) = 2 + log2(5 x + 3 + 1) 11. logx(2x 2 – 7x +12) = 2 12. log3(4.3 x – 1) = 2x – 1 13. log2(9 - 2 x) = 3 – x 14. log2x – 3 16 = 2 log2x – 3x = 2 15. 1 1 32 log3 <- - x x (SPVinh’98) 16. 5 1 log25log2 5 x=- 17. 02log 3 1 log 3 5 1 =÷ ø ö ç è æ -x 1 11 1 log2 =÷ ÷ ø ö ç ç è æ --x 18. 01,02log 10 -=x 2)1352(log 2 7 =+- xx 19. 3logloglog 2 142 =+ xx log2(|x+1| - 2) = - 2 20. log2(4.3 x - 6) - log2(9 x - 6) = 1 3)62(log2 =+xx 21. ( ) xx 323 log21log =++ 3log3x – log9x = 5 22. log(2(x – 1) + log2x = 1 logx + 1(3x 2 – 3x – 1) = 1 23. x x x x - = + 2 log 1 log 33 ; 1 log)1(log 55 + =- x x x 24. )1lg( 2 1 lg += xx ; 2 1 2 12 log4 -<+ - x x (§ HVH’98) 25. ( ) 3 40lg 11lg 3 = - ++ x x ; ( ) 1 log1log 55 + =- x x x 26. ( )( ) 5lg2lg210lg 21lg 2 -=-- xx 27. ( ) 1log296log 32 2 8 -+- = xxx x )22( 3 1 )43( 3 1 loglog 2 +-+ = xxx 28. log4(log2x) + log2(log4x) = 2 29. logx + 1(2x 3 + 2x2 – 3x + 1) = 3 30. log2x.log3x = log2x 2 + log3x 3 – 6 Ph-¬ng tr×nh, bÊt ph-¬ng tr×nh Mò T rang 12 31. 0 63 2 log 21 32 log 7 17 =- + + x x 32. ( ) 0 2 6 log1log 3 13 =- +- x x 33. log3x.log9x.log27x.log81x = 3 2 34. 0 4 2log 2 1log 2 2 1 =-+÷ ø ö ç è æ - xx 35. ( )42221 21log 3 4 1 log 2 x x x - -= - 36. 8 3 log33log31log 222 -+=x 37. 2 1 18 log 2 2 £+ -+ x xx (QGHN’99) 38. 3logloglog 2 142 =+ xx 39. 2 11 logloglog 842 =++ xxx 40. ÷ ø ö ç è æ=++ 12 11 3 5 log3loglog 2793 xxx 41. log2(x + 3) + log2(x – 1) = log25 42. ( ) x xx 4 4 log 2 10log.2log21 =-+ 43. ÷ ÷ ø ö ç ç è æ -=+÷ ø ö ç è æ + x x 1 327lg2lg3lg 2 1 1 44. ( )12log 1 2 3 2 log 2 3 2 12 2 - -=÷ ø ö ç è æ - - x x x 45. 2)23lg()32lg( 22 =--- xx 46. 2lg)65lg()1lg(lg --=-+ xxx 47. 7logloglog 2164 =++ xxx 48. 1+lg(1+x2 – 2x) – lg(1 + x2) = 2lg(1 – x) 49. 2 + lg(1 + 4x2 – 4x) – lg(19 + x2) = 2lg(1 – 2x) 50. ( ) 2lg 2 5 lg1lg 2 1 lg2 +÷ ø ö ç è æ +=--÷ ø ö ç è æ + xxx 51. ( ) xxxx lg 2 1 6lg 2 1 3 1 lg 3 4 lg -+=÷ ø ö ç è æ --÷ ø ö ç è æ + 52. (x – 4)2log4(x – 1) – 2log4(x – 1) 2 = (x – 4)2logx-1 4 – 2logx - 116 53. 32 )123( 2 )23( 2 log3loglog 22 +=+ ++++ xxxx 54. ( ) 944log2log 2323 =++++ xxx 55. 2 11 loglog3log 3 12525 3 5 =++ xxx 56. 0log 2 log 1 =- - x a xa a a 57. 6logloglog 3 133 =++ xxx 2log2log.2log 42 xxx = 58. log2x + log4x + log8x = 11. log2x – log16x = 3 59. 3log )34( 2 =-+ xxx ; 1)(loglog 2 1 3 1 -= x 60. lg5 + lg(x + 10) = 1 – lg(2x – 1) + lg(21x – 20) 61. x x x x 2 3 323 log2 1 3 loglog. 3 log +=-÷ ø ö ç è æ 62. 1)2(loglog 33 =++ xx ; x(lg5 – 1) = lg(2x + 1) – lg6 63. 2loglogloglog 4224 =+ xx ; 6lg5lg)21lg( +=++ xx x 64. ÷ ø ö ç è æ -=+ 2 11 4 75 log 2 log 1 3 2 32 x x x 65. 0)2(loglog 2 322862 22 =- ++++ xx xxxx ; 66. xxxx 10 )1( 432 loglogloglog =++ + 67. 3 2log 1 16 32 log 56 2 -=÷ ø ö ç è æ - x x xx Ph-¬ng tr×nh, bÊt ph-¬ng tr×nh Mò T rang 13 68. ( ) 13log25log 3 1 82 =-+- xx 69. log4log3log2x = 0 logplog2log7x £ 0 70. )12(log.3log21 log 2log21 9 9 9 x x x -=- + 71. [ ]{ } 2 1 log31log2log 234 =+ x 72. )93.11(5 )33( 5 3 5 logloglog)1( 1 -+ =+- + xx x 73. )1(log)1(log)1(log 543 +=+++ xxx 74. [ ]{ } 2 1 log1(log1log1log =+++ xdcba 75. ( )[ ]{ } 2 1 log31log1log2log 2234 =++ x 76. lg5 + lg(x + 10) = 1 – lg(2x – 1) + lg(21x – 20) 77. log2(x 2 + 3x + 2) + log2(x 2 + 7x + 12) = 3+ log23 78. 2log3(x – 2) 2 + (x – 5)2logx – 23 = 2logx – 29 + (x – 5)2log3(x – 2) 79. ( ) 3log 2 1 log.265log 33 122 9 -+ - =+- - x x xx 80. 0logloglog 5 3 12 >x ; 2 1 logloglog 524 =x v Ph-¬ng ph¸p ®Æt Èn sè phô L o¹i 1: V Ý dô. Gi¶i ph-¬ng tr×nh: 1 lg1 2 lg5 1 = + + - xx Gi¶i: § Ó ph-¬ng tr×nh cã nghÜa, ta ph¶i cã: lgx ¹ 5 vµ lgx ¹ -1.§ Æt lgx = t (* ) (t ¹ 5 , t ¹ 1), ta ®-îc pt Èn t: ( ) ê ê ê ê ë é = + = = - = Û=+-Û--+=-++Û +-=-++Û= + + - =--=D 3 2 15 2 2 15 065552101 )1)(5()5(211 1 2 5 1 16.4)5( 22 2 t t ttttttt tttt tt Ta thÊy 2 nghiÖm trªn ®Òu tho¶ m·n ®iÒu kiÖn cña t. D o ®ã: + V íi t = 2, thay vµo (* ) ta cã: lgx = 2 Û x = 102 = 100. + V íi t = 3, thay vµo (* ) ta cã: lgx = 3 Û x = 103 =1000. V Ëy ph-¬ng tr×nh ®· cho cã 2 nghiÖm x = 100 vµ x = 1000. B µi tËp t-¬ng tù. L o¹i 1: 1. 01log2log.4 24 2 4 =++ xx 2. 5log25,155log 2xx =- 3. 0log610log10log 1023 =-+ xxx 4. 1)15(log).15(log 242 =-- xx Ph-¬ng tr×nh, bÊt ph-¬ng tr×nh Mò T rang 14 5. 12log.)2(log 222 =xx 6. 02log.4)33(log 332 =-+ +x x 7. 34log2log 22 =+ x x 8. 9)(lglg3 22 =-- xx 9. 40lg9lg 22 =+ xx 10. 03log3log.3log 813 =+ xxx 11. ( ) 2 5 3log14log 143 >++ +x x 12. 2 7 1 loglog7 =- xx 13. log2x + logx2 = 2 5 14. logx2 – log4x + 26 7 = 0 15. 044loglog.5 22 =-- xx 16. ( ) 025log 2 1 log 5 2 5 =-+ xx 17. 316log64log 22 =+ xx 18. 2 2 2 2 log23log xx ³+ 19. 2log3(2x + 1) = 2.log2x + 13 + 1 20. 12log.)2(log 222 <xx 21. 1lg 2 lg 1lg lg2 - +-= - x x x x 22. 022.64 27logloglog 399 =+- xx 23. 022.54 9logloglog 333 =+- xx 24. xx x 2 2 2 log21log2 =+ - 48 25. xx x 2 2 2 log21log 2242 =++ 26. ( ) ( ) 52log82log 4 1 2 2 ³--- xx 27. 1log)1(log).1(log 26 2 3 2 2 --=-+-- xxxxxx 28. 09log42log 24 =++ xx log2|x + 1| - logx + 164 = 1 29. ( ) ( ) 2422 116log16log2 2 3 2 3 =+ +-- xx 013loglog3 33 =-- xx 30. ( ) xx ++ =- 2log2log2 55 525 ; 011 4 log.3log.2 2 2 2 =-- x x 31. 1loglog2 1255 <- x x ; 01lg10lg 322 >+- xx 32. 04log)1(log )1(2 32 2 <--+ +xx ; 9)(lglg3 222 =-- xx 33. 3lg)1,0lg().10lg( 3 -= xxx ; 01log2)(log4 2 4 2 4 <++- xx 34. aaa xx 3 3 logloglog =- ; 8lg3x – 9lg2x + lgx = 0 35. 1log32log 3 1 3 1 +=+- xx ; 36. ( ) ( ) a axax axa 1 loglog.log 2= 37. ( ) xx x 27log27 log3 10 log1 27 =+ 38. lg4(x – 1)2 + lg2(x – 1)3 = 25 (Y HN’00) 39. 2log4(3x – 2) + 2.log3x – 24 = 5 40. 2log8loglog.5 29 3 9 9 2 =++ xxx x x x 41. ( ) ( )243log1243log 2329 +->++- xxxx (SPHN’00) 42. ( ) ( ) 022log32log 2 2 1 22 2 £++-++- xxxx 43. 05log4log 42 =-- xx (C§SPHN’97) 44. log3x + 7(9 + 12x + 4x 2) + log2x + 3(21 + 23x + 6x 2) = 4 45. log1-2x(1 - 5x + 6x 2) + log1 - 3x(1 - 4x + 4x 2) = 2 46. 1log)1(log).1(log 26 2 3 2 2 --=-+-- xxxxxx L o¹i 2: § «i khi ®Æt Èn phô nh-ng ph-¬ng tr×nh vÉn chøa Èn ban ®Çu. Ph-¬ng tr×nh, bÊt ph-¬ng tr×nh Mò T rang 15 1. 0log24log.lglg 22 2 =+- xxxx 2. 016log)5()1(log )1(5 2 5 =--++ +xxx 3. 03log)4(log 2 2 2 =-+-+ xxx x 4. 062log).5(log 2 2 2 =+--+ xxxx 5. 016)1(log)1(4)1(log)2( 3 2 3 =-+++++ xxxx 6. 016)2(log)2(4)2(log)3( 3 2 3 =-+++++ xxxx 7. log2 2x + (x – 1)log2x + 2x – 6 = 0. (TS’97) L o¹i 3: 1. 0log.loglogloglog 3232 2 2 =-+- xxxxx 2. 2log.loglog)(log2 )(222 2 2 2 =-+- -xxxxxx L o¹i 4: 4.1) 2)1log(3)1(log 222 =-++-- xxxx 4.6) 3 3 3 2 2log332log -=+ xx 4.2) 1lg1lg23 --=- xx 4.7) 11loglog 2 2 2 =++ xx 4.3) 1log1log1 3 33 3 =++- xx 4.8) 12log36 )15(6 ++= + xxx 4.4) 6log52log3 )4(4 )4( 4 22 =-++ -- xxxx 4.9) 1log.67 )56(7 1 += -- xx 4.5) 10lg1 2 =-+ xx v Ph-¬ng ph¸p sö dông tÝnh ®¬n ®iÖu cña hµm sè l«garit L o¹i 1: log2(3x – 1) = -x + 1 2. 4log 3 1 -= xx 3. 4log3 =+ xx 4. 5log2 2 1 =+ xx L o¹i 2: Ph-¬ng tr×nh kh«ng cïng c¬ sè. V D 1. Gi¶i ph-¬ng tr×nh: 1. x x = + )3( 5log2 2. xx =+ )3(log52 3. x x = - )3( 2log3 4. xx 73 loglog £ 5. xx 25 )1( 2 loglog ³ + 6. ( ) xx 32 log1log =+ 7. ( ) xx 32 log1log =+ 8. )22(2 2 3 log1log -->+ xx 9. xxx 4 84 6 log)(log2 =+ 10. ( ) xxx 342 log4 1 log =+ 11. xx coslogcotlog.2 23 = L o¹i 3: f(x) = f(y) Û x = y, (f - ®ång biÕn hoÆc nghÞch biÕn ) 1. log3(x 2 + x + 1) – log3x = 2x – x 2. 2. x xxx -=- - 1 log22 2 1 1. T×m k ®Ó ph-¬ng tr×nh cã ®óng 3 nghiÖm: ( ) ( ) 022log.232log.4 2 1 22 2 2 =+-++- +--- kxxx xxkx T×m m ®Ó ph-¬ng tr×nh cã nghiÖm. 1) axx =++- )54(log 23 ; 2) axx =-+ )2(log 442 L Ëp b¶ng xÐt dÊu: Ph-¬ng tr×nh, bÊt ph-¬ng tr×nh Mò T rang 16 1. ( ) ( ) 0 43 1log1log 2 3 3 2 2 > +- +-+ xx xx 2. ( ) ( ) 0 43 1log1log 2 3 3 2 2 > -+ +-+ xx xx 3. ( ) ( ) 0 43 1log1log 2 3 2 2 > -- +-+ xx xx 4. ( ) ( ) 0 43 1log1log 2 3 32 > -+ +-+ xx xx Ph-¬ng tr×nh l«garit chøa tham sè 1. T×m c¸ c gi ¸trÞ cña m ®Ó ph-¬ng tr×nh sau cã hai nghiÖm ph©n biÖt: a. log3(9 x + 9a3) = 2 b. log2(4 x – a) = x 2. (§H’86) T ×m m ®Ó pt sau cã 2 nghiÖm tm x 1, x2 tm: 4 < x1 < x2 < 6: ( ) ( ) ( ) 024log)12(4log3 2 1 2 2 1 =++-+--- mxmxm 3. T×m c¸ c gi ¸trÞ cña a ®Ó ph-¬ng tr×nh sau cã 2 nghiÖm tho¶ m·n: 0 < x 1 < x2 < 2: (a – 4)log2 2(2 – x) – (2a – 1)log2(2 – x) + a + 1 = 0 4. T×m c¸ c gi ¸trÞ cña m ®Ó ph-¬ng tr×nh sau cã hai nghiÖm x1, x2 tho¶ m·n x 1 2 + x2 2 > 1: 2log[2x2 – x + 2m(1 – 2m)] + log1/2(x 2 + mx – 2m 2) = 0 5. (§HKT HN ’98) Cho ph-¬ng tr×nh: ( ) 3)2(4log )2(22 2 -=- - xx x a a. Gi¶i ph-¬ng tr×nh víi a = 2 b. X c¸ ®Þnh c¸ c gi ¸trÞ cña a ®Ó pt cã 2 nghiÖm ph©n biÖt x 1, x2 tho¶ m·n: 4, 2 5 21 ££ xx . 6. V íi gi ¸trÞ nµo cña a th× ph-¬ng tr×nh sau cã
File đính kèm:
- TONG HOP KIEN THUC PTBPTMULogarit phan 2.pdf