Tổng hợp bài tập khảo sát hàm số trong ôn thi Đại học
Phương pháp chung:
* Thiết lập phương trình hoành độ giao điểm của đồ thị hai hàm số đã cho:
f(x) = g(x) (1)
* Ty theo số nghiệm của phương trình (1) m ta kết luận về số điểm chung
của hai đồ thị (C1) và (C2) .
Lưu ý:
Số nghiệm của phương trình (1) chính là số giao điểm của hai đồ thị (C1) và (C2).
Ghi nhớ: Số nghiệm của pt (1) = số giao điểm của hai đồ thị (C1) và (C2).
Chuyên đề : CÁC BÀI TOÁN CƠ BẢN CÓ LIÊN QUAN ĐẾN KHẢO SÁT HÀM SỐ 1.BÀI TOÁN 1 : SỰ TƯƠNG GIAO CỦA HAI ĐỒ THỊ Bài toán tổng quát: Trong mp(Oxy) . Hãy xét sự tương giao của đồ thị hai hàm số : (C1) và (C2) không có điểm chung (C1) và (C2) cắt nhau (C1) và (C2) tiếp xúc nhau Phương pháp chung: * Thiết lập phương trình hoành độ giao điểm của đồ thị hai hàm số đã cho: f(x) = g(x) (1) * Tùy theo số nghiệm của phương trình (1) mà ta kết luận về số điểm chung của hai đồ thị (C1) và (C2) . Lưu ý: Số nghiệm của phương trình (1) chính là số giao điểm của hai đồ thị (C1) và (C2). Ghi nhớ: Số nghiệm của pt (1) = số giao điểm của hai đồ thị (C1) và (C2). Chú ý 1 : * (1) vô nghiệm (C1) và (C2) không có điểm điểm chung * (1) có n nghiệm (C1) và (C2) có n điểm chung Chú ý 2 : * Nghiệm x0 của phương trình (1) chính là hoành độ điểm chung của (C1) và (C2). Khi đó tung độ điểm chung là y0 = f(x0) hoặc y0 = g(x0). Áp dụng: Dạng 1: Tìm tọa độ giao điểm của hai đồ thị Bài 1: Tìm tọa độ giao điểm của đường cong (C): và đường thẳng Bài 2: Tìm tọa độ giao điểm của hai đường cong (C): và (C'): Bài 3: Tìm tọa độ giao điểm của đường cong (C): và đường thẳng Bài 4: Tìm tọa độ giao điểm của đường cong (C): và đường thẳng Bài 5: Tìm tọa độ giao điểm của đường cong (C): và đường thẳng Dạng 2: Tìm tham số để hai đồ thị cắt nhau tại 2( 3, 4) điểm phân biệt Bài 1 : Cho hàm số . Chứng minh rằng với mọi m, đường thẳng luơn cắt đồ thị hàm số đã cho tại hai điểm phân biệt. Bài 2 : Cho hàm số . Tìm tất cả các giá trị của tham số m để đường thẳng cắt đồ thị hàm số đã cho tại hai điểm phân biệt. Bài 3: Cho hàm số (1) Xác định m sao cho đồ thị hàm số (1) cắt trục hoành tại 3 điểm phân biệt. Bài 4: Cho hàm số (1) Xác định m sao cho đồ thị hàm số (1) cắt trục hoành tại 3 điểm phân biệt. Bài 5: Cho hàm số (1) Xác định m sao cho đồ thị hàm số (1) cắt trục hoành tại 4 điểm phân biệt. b. Điều kiện tiếp xúc của đồ thị hai hàm số : (Dành cho chương trình NC) Định lý : (C1) tiếp xúc với (C1) hệ :có nghiệm Bài 1: Chứng minh rằng hai đường cong và tiếp xúc nhau.tại một điểm nào đĩ. Bài 2: Tìm k để đường thẳng tiếp xúc với đường cong Bài 3: Tìm k để đường thẳng tiếp xúc với đường cong Bài 4: Tìm k để đường thẳng tiếp xúc với đường cong Bài 2: Tìm k để đường thẳng tiếp xúc với đường cong 2.BÀI TOÁN 2: TIẾP TUYẾN VỚI ĐƯỜNG CONG a. Dạng 1: Viết phương trình tiếp tuyến với đồ thị (C):y = f(x) tại điểm (C): y=f(x) Phương pháp: Phương trình tiếp tuyến với (C) tại M(x0;y0) có dạng: y - y0 = k ( x - x0 ) hay Trong đó : x0 : hoành độ tiếp điểm y0: tung độ tiếp điểm và y0 = f(x0) k : hệ số góc của tiếp tuyến và được tính bởi công thức : k = f'(x0) Áp dụng: Bài 1: Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm trên đồ thị cĩ hồnh độ . Bài 2: Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm trên đồ thị cĩ hồnh độ . Bài 3: Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm trên đồ thị cĩ hồnh độ . Bài 4: Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm trên đồ thị cĩ tung độ . Bài 5: Cho hàm số (1). Viết phương trình tiếp tuyến với đồ thị (C) của hàm số (1) tại điểm trên (C) cĩ hồnh , biết rằng Bài 6: Cho hàm số (1). Viết phương trình tiếp tuyến với đồ thị (C) của hàm số (1) tại giao điểm của đồ thị với các trục tọa độ. b. Dạng 2: Viết phương trình tiếp tuyến với đồ thị (C): y=f(x) biết tiếp tuyến có hệ số góc k cho trước (C): y=f(x) Phương pháp: Ta có thể tiến hành theo các bước sau Bước 1: Gọi là tiếp điểm của tiếp tuyến với (C) Bước 2: Tìm x0 bằng cách giải phương trình : , từ đó suy ra =? Bước 3: Thay các yếu tố tìm được vào pt: y - y0 = k ( x - x0 ) ta sẽ được pttt cần tìm. Ví dụ: Viết phương trình tiếp tuyến của đồ thị hàm số biết tiếp tuyến cĩ hệ số gĩc Ví dụ: Viết phương trình tiếp tuyến của đồ thị hàm số biết tiếp tuyến cĩ hệ số gĩc bằng Chú ý : Đối với dạng 2 người ta có thể cho hệ số góc k dưới dạng gián tiếp như : tiếp tuyến song song, tiếp tuyến vuông góc với một đường thẳng cho trước . (C): y=f(x) (C): y=f(x) Khi đó ta cần phải sử dụng các kiến thức sau: Định lý 1: Nếu đường thẳng () có phương trình dạng : y= ax+b thì hệ số góc của () là: Định lý 2: Trong mp(Oxy) cho hai đường thẳng . Khi đó: Áp dụng: Bài 1: Cho đường cong (C): Viết phương trình tiếp tuyến với (C) biết tiếp tuyến song song với đường thẳng (d): y = 4x+2. Bài 2: Cho đường cong (C): Viết phương trình tiếp tuyến với (C) biết tiếp tuyến song song với đường thẳng Bài 3: Cho đường cong (C): Viết phương trình tiếp tuyến với (C) biết tiếp tuyến vuông góc với đường thẳng c. Dạng 3: Viết phương trình tiếp tuyến với (C): y=f(x) biết tiếp tuyến đi qua điểm A(xA;yA) Phương pháp: Ta có thể tiến hành theo các bước sau Bước 1: Viết phương trình đường thẳng () qua A và có hệ số góc là k bởi công thức: (*) Bước 2: Định k để () tiếp xúc với (C). Ta có: Bước 3: Giải hệ (1) tìm k. Thay k tìm được vào (*) ta sẽ được pttt cần tìm. Áp dụng: Ví dụ1: Cho đường cong (C): Viết phương trình tiếp tuyến với (C) biết tiếp tuyến đi qua điểm A(0;-1) Ví dụ 2: Cho đường cong (C): Viết phương trình tiếp tuyến với (C) biết tiếp tuyến đi qua điểm A(-2;0). 3.BÀI TOÁN 3: BIỆN LUẬN SỐ NGHIỆM CỦA PHƯƠNG TRÌNH BẰNG ĐỒ THỊ Cơ sở của phương pháp: Xét phương trình f(x) = g(x) (1) Nghiệm x0 của phương trình (1) chính là hoành độ giao điểm của (C1):y=f(x) và (C2):y=g(x) Bài tốn : Bằng đồ thị hãy biện luận theo m số nghiệm của phương trình dạng : f(x) = m (*) Phương pháp: Bước 1: Xem (*) là phương trình hoành độ giao điểm của hai đồ thị: Bước 2: Vẽ (C) và () lên cùng một hệ trục tọa độ Bước 3: Biện luận theo m số giao điểm của () và (C) Từ đó suy ra số nghiệm của phương trình (*) Minh họa: Áp dụng: Bài 1: 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số 2) Dựa vào đồ thị (C), biện luận theo m số nghiệm của phương trình: 3) Tìm m để phương trình sau có 3 nghiệm phân biệt: Bài 2: 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số 2) Dựa vào đồ thị (C), biện luận theo m số nghiệm của phương trình: Bài 3: 1) Khảo sát sự biến thiên và vẽ đồ thị hàm số 2) Tìm m để phương trình sau cĩ 4 nghiệm phân biệt: -------------------Hết-----------------
File đính kèm:
- Chuyên đề KSHS TN.doc