Tiểu luận Lý thuyết các hàm đặc trưng
Nhiệt động học là một khoa học nghiên cứu về sự biến hóa dạng năng lượng này thành dạng dạng năng lượng khác và thiết lập các định luật của sự biến hóa đó.
Nhiệt động học đã phát sinh và trở thành một ngành độc lập vào giữa thế kỷ thứ 19 khi nghiên cứu công của máy hơi nước.
’ = - A, Q’ = - Q: Công và nhiệt hệ sinh và tỏa ra. Hệ đứng yên thì: W = U (nội năng). Suy ra: trong quá trình biến đổi, độ biến thiên năng lượng của hệ bằng tổng công và nhiệt mà hệ nhận được trong quá trình đó. ∆U = U2 – U1 = A + Q. Đối với quá trình biến đổi vô cùng nhỏ: dU = ∂A + ∂Q 2. Ý nghĩa của nguyên lí I nhiệt động học - Nếu A > 0, Q > 0 => ∆U = U2 – U1 > 0: Nội năng tăng, hệ nhận công và nhiệt. Công sinh ra A’ < 0 và tỏa nhiệt ra: Q’ < 0. - Nếu A U2 Nội năng giảm, hệ sinh công A’ > 0 và tỏa nhiệt Q’ > 0. - Nếu A = 0 và Q = 0 => U2 = U1: Nội năng được bảo toàn. - Định luật bảo toàn va chuyển hóa năng lượng: Năng lượng không tự sinh ra cũng không tự mất đi, nó chỉ chuyển hóa từ dạng này sang dạng khác, truyền từ vật này sang vật khác. 3. Hệ quả nguyên lí I nhiệt động lực học: - Không tồn tại động cơ vĩnh cửu loại I: Gỉa sử hệ thực hiện một chu trình kín và trở lại trạng thái ban đầu; Tức U2 = U1 -> ∆U = 0 => A = - Q hay –A = Q; Như vậy hệ nhận công thì tỏa nhiệt, sinh công thì phải nhận nhiệt. Vậy nên: Trong một hệ cô lập gồm 2 vật trao đổi nhiệt, nhiệt lượng do vật này tỏa ra bằng nhiệt lượng do vật kia thu vào. ∆U = 0 => Q1 = - Q2. 4. Ứng dụng của nguyên lí I nhiệt động lực học: 1) Qúa trình cân bằng và trạng thái cân bằng a. Định nghĩa: Trạng thái cân bằng của hệ là trạng thái trong đó mọi thông số trạng thái không biến đổi theo thời gian. Trạng thái cân bằng bị phá vỡ nếu chịu tác động từ bên ngoài. Qúa trình cân bằng là trạng thái biến đổi gồm một chuỗi liên tiếp các trạng thái cân bằng. Thực tế không có quá trình cân bằng; Qúa trình biến đổi rất chậm, trạng thái cân bằng được thiết lập trong toàn hệ trước khi chuyển sang trạng thái cân bằng tiếp theo (quá trình giả cân bằng). b. Công mà hệ nhận được trong quá trình cân bằng Áp suất tác dụng lên pittông: p = F/S Công mà khối khí nhận được: ∂A = - Fdl = - pSdl Sdl = dV => ∂A = - pdV. Công mà hệ nhận được trong quá trình V1 -> V2: A: Diện tích dưới đường cong, trong chu trình A = Agiãn + Anén. c. Nhiệt mà hệ nhận được trong quá trình cân bằng * Nhiệt dung: Nhiệt dung riêng c của một chất là đại lượng vật lí có giá trị bằng lượng nhiệt cần thiết mà một đơn vị khối lượng nhận được để nhiệt độ của nó tăng thêm 1 độ. Nhiệt dung phân tử mol: Nhiệt hệ nhận được: C = Cv: trong quá trình đẳng tích C = Cp: trong quá trình đẳng áp. 2) Qúa trình đẳng tích - V = const - P/T = const (ĐL Gay – Lussac) - Công A = p(V2 – V1) = 0 => ∆U = Q - Biến thiên nội năng: Nhiệt nhận được: ∆T = T2 – T1 3) Qúa trình đẳng áp - p = const - V/T = const (ĐL Gay – Lussac) - Công nhận được: A = - p(V2 – V1) - Nhiệt hệ nhận được: Q = ∆U – A => => R = Cp – Cv Hệ số Poission 4) Qúa trình đẳng nhiệt - T = const => T1 = T2 = T - pV = const (ĐL Boyle – Mariotte) - ∆U = 0 => A = - Q hay Q = - A - Công nhận được: p = p1V1/V 5) Qúa trình đoạn nhiệt - ∂Q = 0 hay Q = 0 - p tăng do V giảm và T tăng - dU = ∂A (NL I NĐH) - Vậy: - Trong quá trình đẳng nhiệt: p giảm do V tăng hoặc p tăng do V giảm (Qúa trình đoạn nhiệt dốc hơn). - Về mặt toán học: - Về phương diện vật lý: Trong quá trình đoạn nhiệt - Độ biến thiên nội năng trong quá trình đoạn nhiệt: - Công mà hệ nhận được trong quá trình đoạn nhiệt; - Công do hệ sinh ra: A’ = - A: Nhân vào và thay: Suy ra: B- NGUYÊN LÍ THỨ HAI NHIỆT ĐỘNG LỰC HỌC I. Những hạn chế của nguyên lí II - Không xác định chiều truyền tự nhiên của nhiệt: Nhiệt truyền tự nhiên từ vật nóng hơn sang vật lạnh hơn. Không có quá trình tự nhiên ngược lại. - Không xác định chiều chuyển hóa tự nhiên của năng lượng: Thế năng biến tự nhiên thành động năng rồi thành nhiệt tỏa ra. Không có quá trình tự nhiên ngược lại: Nhiệt -> Động năng -> Thế năng. * Tuy nhiên các quá trình ngược lại trên đều thõa mãn nguyên lí I nhiệt động lực học. - Không đánh giá được chất lượng nhiệt. - Không phân biệt được sự khác nhau giữa công và nhiệt. II. Qúa trình thuận nghịch và không thuận nghịch 1. Định nghĩa: a. Qúa trình: A -> B -> là thuận nghịch nếu quá trình ngược B -> A, hệ trãi qua các trạng thái trung gian như trong quá trình thuận A -> B. Suy ra: Hệ chỉ có thể trở về trạng thái cân bằng -> Qúa trình thuận nghịch là quá trình cân bằng -> Athuận = A’nghịch, Qthuận = Qnghịch. Hệ trở về trạng thái ban đầu, môi trường xunh quanh không biến đổi. b. Qúa trình không thuận nghịch: Sau khi thực hiện QT thuận và QT nghịch đưa hệ về trạng thái ban đầu thì môi trường xung quanh bị biến đổi. 2. Thí dụ: Qúa trình giãn đoạn nhiệt vô cùng chậm: QTTN. Dao động của con lắc không ma sát có nhiệt độ bằng nhiệt độ bên ngoài: QTTN. * Các quá trình không thuận nghịch - Các quá trình có ma sát: không thuận nghịch. - Truyền nhiệt từ vật nóng qua vật lạnh: Không thuận nghịch. - Qúa trình giãn khí trong chân không: Không thuận nghịch. III. Nguyên lý thứ hai nhiệt động lực học 1. Động cơ nhiệt: - Máy biến nhiệt thành công như động cơ hơi nước, động cơ đốt trong. - Tác nhân: chất vận chuyển (hơi nước, khí,) biến nhiệt thành công: là tuần hoàn. - Hiệu suất của động cơ nhiệt: Sau một chu trình: ∆U = - A’ + Q1 – Q2 = 0 => A’ = Q1 – Q2’ 2. Phát biểu nguyên lý II nhiệt động lực học a. Phát biểu của Clausius: Nhiệt không thể tự động truyền từ vật lạnh sang vật nóng hơn. b. Phát biểu của Thompson: Một động cơ không thể sinh công, nếu nó chỉ trao đổi nhiệt với một nguồn nhiệt duy nhất. c. Ý nghĩa: - Không thể chế tạo được động cơ vĩnh cửu loại hai: lấy nhiệt chỉ từ 1 nguồn (T thấp như nước biển) để sinh công. - Chất lượng nhiệt: T càng cao, chất lượng nhiệt càng cao. IV. Chu trình Carnot 1. Chu trình Carnot thuận nghịch gồm 4 quá trình TN: - Giãn đẳng nhiệt: T1 = const, 1->2, nhận Q1 từ nguồn nóng. - Giãn đoạn nhiệt: 2->3, nhiệt độ giảm từ T1->T2. - Nén đẳng nhiệt: T2 = const, 3->4, thải Q2 (làm nguội). - Nén đoạn nhiệt: 4->1, nhiệt độ tăng: T2 -> T1. => Nhận xét: - Trong chu trình thuận 12341, hệ nhận nhiệt Q1 từ nguồn nóng, sinh công A’ và thải nhiệt Q2’ vào nguồn lạnh -> Động cơ nhiệt. - Trong chu trình nghịch 14321, hệ nhận công lấy nhiệt (làm lạnh) từ nguồn lạnh và thải nhiệt vào nguồn nóng -> Máy làm lạnh. 2. Hiệu suất trong chu trình Carnot thuận nghịch: => Cần tính Q1 và Q2’. - Giãn đẳng nhiệt 1->2 có: - Nén đẳng nhiệt 3->4 có: - Trong quá trình đoạn nhiệt 2->3 có: Trong quá trình đoạn nhiệt 4->1 có: Mà Hiệu suất chu trình Carnot TN với tác nhân là khí lý tưởng chỉ phụ thuộc vào nhiệt độ nguồn lạnh và nguồn nóng. Hệ số làm lạnh: V. Định lí Carnot, hiệu suất cực đại của động cơ nhiệt 1. Định lí Carnot a) Phát biểu: Hiệu suất động cơ nhiệt thuận nghịch chạy theo chu trình Carnot với cùng nguồn nóng và nguồn lạnh, đều bằng nhau và không phụ thuộc vào tác nhân cũng như cách chế tạo máy: Hiệu suất của động cơ không thuận nghịch nhở hơn hiệu suất của động cơ thuận nghịch: b) Chứng minh Ghép hai động cơ nhiệt với nhau, động cơ II chạy theo chiều ngược: nhận công A’II từ động cơ I, nhận nhiệt từ nguồn lạnh T2, thải nhiệt vào nguồn nóng T1. Ta có: A’I – A’II = A’ > 0 => I + II = động cơ vĩnh cửu. Cũng tương tự khi . Vô lý. Vậy: c) Chứng minh : Gỉa sử II là KTN ngoài nhiệt nhả cho nguồn lạnh còn nhiệt vô ích -> Q’2II > Q’2I => . 2. Hiệu suất cực đại của động cơ nhiệt Hiệu suất của động cơ thuận nghịch bất kì luôn nhỏ hơn hiệu suất của động cơ đó chạy theo chu trình Carnot thuận nghịch với cùng 2 nguồn nhiệt và tác nhân: Dấu “=” ứng với chu trình Carnot KTN. Hiệu suất của động cơ chạy theo chu trình Carnot thuận nghịch là hiệu suất cực đại. 3. Kết luận: a) Hiệu suất cực đại luôn nhỏ hơn 1: , vì T2 ≠ 0K & T1 << ∞. Với T2 = 293K. Ta có: T(K) 373 673 1073 1273 2273 0,21 0,56 0,73 0,77 0,81 b) Nhiệt không thể biến hoàn toàn thành công: c) Phương hướng nâng cao hiệu suất động cơ nhiệt: Tăng ∆T -> (T1↑ & T2↓; Giam ma sát. d) Chất lượng nguồn nhiệt: Nguồn nhiệt có nhiệt độ cao hơn thì chất lượng tốt hơn. VI. Biểu thức định lượng (toán học) của nguyên lí II nhiệt động lực học: Đối với chu trình Carnot: Dấu “=” ứng với CT Carnot thuận nghịch. Dấu “<” ứng với quá trình Carnot không thuận nghịch. 2. Đối với chu trình nhiều nguồn nhiệt: Q1, Q2,,Qn ứng với nhiệt độ T1, T2,, Tn (gồm các quá trình đẳng nhiệt và đoạn nhiệt liên tiếp nhau). Các quá trình rất ngắn thì: Bất đẳng thức Clausius là biểu thức định lượng của nguyên lý II NĐLH: Tích phân Clausius đối với 1 chu trình không thể lớn hơn 0. VII. Hàm etropy và nguyên lí tăng entropy 1. Tích phân Clausius theo quá trình thuận nghịch: Tích phân Clausius theo các quá trình thuận nghịch từ trạng thái 1 -> 2 không phụ thuộc vào các quá trình biến đổi mà chỉ phụ thuộc vào trạng thái đầu và trạng thái cuổi của quá trình. 2. Hàm Entropi: - Đối với quá trình không thuận nghịch: Tích phân Clausius theo quá trình không thuận nghịch từ trạng thái 1->2 nhỏ hơn độ biến thiên entropi của hệ trong quá trình đó. 3. Nguyên lý tăng Entropi: Qúa trình không thuận nghịch Nguyên lí tăng entropi: + Trong hệ cô lập: Dấu “=” ứng với QTTN Dấu “>” ứng với QTKTN Đây là biểu thức định lượng nguyên lí II NĐLH viết dưới dạng hàm entropi. Qúa trình TN: ∆S = 0 (entropi không đổi). Qúa trình KTN: ∆S > 0 (entropi tăng) Trong thực tế các quá trình là KTN: Trong hệ cô lập các quá trình nhiệt động lực luôn xảy ra theo chiều tăng entropi. Hệ cô lập thực không thể 2 lần qua cùng một trạng thái. Qúa trình chấm dứt thì S đạt cực đại và hệ ở trạng thái cân bằng. Ví dụ: Hệ gồm 2 vật với T1 và T2: Q2: Vật 2 nhận Q1 = - Q2: Vật 1 thải. Vật nhận nhiệt (2) phải có nhiệt T2 < T1. Nguyên lý tăng entropi tương đương với nguyên lý II nhiệt động lực học. * Hiệu suất cực đại: Chu trình TN: ∆S2 + ∆S1 = ∆Q1 nhả từ nguồn nóng ∆Q2 nguồn lạnh nhận -> S2 4. Thuyết chết nhiệt vũ trụ và sai lầm của nó: * Clausius coi vũ trụ là hệ cô lập và áp dụng nguyên lý II cho toàn vũ trụ
File đính kèm:
- ly thuyet ham dac trung.doc