Sáng kiến kinh nghiệm Phương pháp giải một số bài toán xác suất lớp 11
LỜI NÓI ĐẦU
Trong chương trình sách giáo khoa đại số và giải tích 11 có một chương mới so với các bộ sách trước đó là chương II: Tổ hợp và xác suất. Phần tổ hợp trước đây nằm trong chương trình giải tích 12 nay được đưa xuống lớp 11, còn phần xác suất là mới hoàn toàn.
Lý thuyết xác suất nghiên cứu quy luật của các hiện tượng ngẫu nhiên. Do đặc thù của chuyên ngành nên các bài toán về xác suất có nhiều điểm khác biệt so với các bài toán đại số, giải tích, hình học. Chính vì vậy, đứng trước một bài toán xác suất học sinh thường lúng túng, không biết cách giải quyết như thế nào, thậm chí có nhiều em đã làm xong cũng không dám chắc mình đã làm đúng.
Với mong muốn giúp học sinh tự tin khi giải các bài toán xác suất tôi chọn đề tài “Phương pháp giải một số bài toán xác suất 11”
Đề tài của tôi gồm 3 phần:
Phần I: Lời nói đầu
Phần II: Nội dung
A: Cơ sở lý thuyết
B: Phương pháp giải một số bài toán xác suất 11
C: Một số bài tập tham khảo
Phần III: Kết luận
ử lớn thì việc liệt kê trở nên khó khăn và dễ xét thiếu phần tử Bài toán 4. Trên một cái vòng hình tròn dùng để quay sổ số có gắn 36 con số từ 01 đến 36. Xác suất để bánh xe sau khi quay dừng ở mỗi số đều như nhau. Tính xác suất để khi quay hai lần liên tiếp bánh xe dừng lại ở giữa số 1 và số 6 ( kể cả 1 và 6) trong lần quay đầu và dừng lại ở giữa số 13 và 36 ( kể cả 13 và 36) trong lần quay thứ 2. Phân tích: Rõ ràng là trong bài toán này ta không thể sử dụng phương pháp liệt kê vì số phần tử của biến cố là tương đối lớn. Ở đây ta sẽ biểu diễn tập hợp dưới dạng tính chất đặc trưng để tính toán. Gọi A là biến cố cần tính xác suất Ω={(i,j)|i,j∈1, 2, ,36}⇒nΩ=36.36=1296 A={(i,j)|i∈1, 2, ,6,j∈13, 14, ,36} Có 6 cách chọn i, ứng với mỗi cách chọn i có 25 cách chọn j ( từ13 đến36 có 25 số) do đó theo quy tắc nhân nA=6.24=144 PA=nAnΩ=1441296=19 Ta cùng xét một bài toán khá thú vị sau: Bài toán 5 Gieo một đồng tiền cân đối đồng chất liên tiếp cho đến khi lần đầu tiên xuất hiện mặt ngửa hoặc cả 6 lần xuất hiện mặt sấp thì dừng lại. Mô tả không gian mẫu. Tính xác suất: A: “Số lần gieo không vượt quá ba” B: “Số lần gieo là năm” C: “Số lần gieo là sáu” Phân tích: Đối với bài toán này rất nhiều học sinh lúng túng không biết cách xác định không gian mẫu vì học sinh vốn quen với các bài toán cho trước số lần gieo. Bài toán này trước hết phải xác định được số lần gieo. Giáo viên có thể gợi ý cho học sinh bằng các câu hỏi như: Nếu không có giả thiết “cả 6 lần xuất hiện mặt sấp thì dừng lại” thì ta phải gieo đồng tiền bao nhiêu lần? Nếu kết hợp với giả thiết “cả 6 lần xuất hiện mặt sấp thì dừng lại” thì ta phải gieo đồng tiền tối đa bao nhiêu lần? Tất nhiên với câu hỏi đầu tiên học sinh không thể đưa ra một con số cụ thể vì nếu gieo 100 lần vẫn có thể là cả 100 lần đều xuất hiện mặt sấp do đó vẫn chưa thể dừng lại nhưng học sinh đã hình dung ra dạng các phần tử đầu tiên. Với câu hỏi thứ hai học sinh có thể trả lời được số lần gieo tối đa là 6. Từ đó học sinh có thể xác định được không gian mẫu Lời giải Không gian mẫu Ω=N, SN, SSN, SSSN, SSSSN, SSSSN, SSSSS Ta có: A=N, SN, SSN, nA=3⇒PA=37 B=SSSSN, nB=1⇒PB=17 C=SSSSSN, SSSSSS, nC=2⇒PC=27 Sau đây tôi xin trình bày phương pháp giải một số bài toán bằng cách sử dụng các quy tắc tính xác suất đã học. Dạng 2: Biến cố đối Trong toán học, có những bài toán khi tính toán trực tiếp rất dài dòng và phức tạp. Khi đó phương pháp gián tiếp lại rất hiệu quả và cho ta cách làm ngắn gọn. Phương pháp sử dụng biến cố đối là một phương pháp như vậy Bài toán 6 Gieo đồng tiền xu cân đối đồng chất 3 lần. Tính xác suất của các biến cố: Biến cố A: “Trong 3 lần gieo có ít nhất một lần xuất hiện mặt ngửa”. Biến cố B: “Trong 3 lần gieo có cả hai mặt sấp, ngửa”. Phân tích: Học sinh có thể giải quyết bài toán theo định hướng là: ít nhất 1 lần xuất hiện mặt ngửa thì có 3 khả năng có thể xảy ra là: 1 lần xuất hiện mặt ngửa, hai lần xuất hiện mặt ngửa, ba lần xuất hiện mặt ngửa. Do vậy học sinh sẽ giải bài toán như sau: Ω={NNN, NNS, NSS, SSS, SNN, SNS, SSN,SNS} A=NSS, SNS,SSN,SNN,NNS,NSN, NNN Suy ra PA=nAnΩ=78 Tuy nhiên làm như vậy dài và rất dễ bỏ quên trường hợp. Tuy nhiên nếu để ý rằng biến cố đối của biến cố A là biến cố A: “Không có lần nào xuất hiện mặt ngửa”. Do đó bài toán này sẽ được giải như sau: Lời giải Không gian mẫu nΩ=2.2.2=8 Ta có biến cố đối của biến cố A là biến cố: A: “Không cố lần nào xuất hiện mặt ngửa” Và ta có A=SSS⇒nA=1⇒PA=18⇒PA=1-18=78 Tương tự ta có: B=SSS, NNN⇒nB=2⇒PB=14⇒PB=34 Bài toán 7. Gieo ngẫu nhiên một con súc sắc cân đối đồng chất hai lần. Tính xác suất của các biến cố sau: Biến cố A: “Trong hai lần gieo ít nhất một lần xuất hiện mặt một chấm” Biến cố B: “Trong hai lần gieo tổng số chấm trong hai lần gieo là một số nhỏ hơn 11” Phân tích: Đối với bài toán này dùng phương pháp sử dụng biến cố đối là phương pháp tối ưu bởi lẽ nếu tính trực tiếp ta phải xét rất nhiều trường hợp Đối với biến cố A Mặt một chấm xuất hiện lần thứ nhất Mặt một chấm xuất hiện lần thứ hai Hai lần gieo đều xuất hiện mặt một chấm (khả năng này lại nằm trong cả hai khả năng trên) Đối với biến cố B. Tổng số trong hai lần gieo là một số nhỏ hơn 11 tức là có 10 khả năng xảy ra: 1,2,,10 Lời giải: Không gian mẫu Ω={(i,j)|i,j∈1, 2, ,6}⇒nΩ=6.6=36 Ta có biến cố đối A={i,ji,j∈ 2, ,6⇒nA=25 PA=nAnΩ=2536⇒pA=1-PA=1136 Ta có: B=i,ji,j∈1, 2, ,6,i+j≥11⇒B=5,6;6,5, 6,6⇒nB=3⇒PB=nBnΩ=336=112 ⇒PB=1-112=1112 Phương pháp sử dụng biến cố đối là một phương pháp hay, tuy nhiên để vận dụng được phương pháp này học sinh cần nắm được hai yếu tố: Nhận dạng loại toán: Các bài toán có cụm từ “có ít nhất”, “tối thiểu”, “tất cả”hoặc tính chẵn, lẻ, vô nghiệm, có nghiệm,nếu tính kiểu bù gọn hơn thì ta dùng biến cố đối Xác định tốt mệnh đề phủ định và phép toán lấy phần bù của một tập hợp để tránh xác định sai biến cố đối. Dạng 3: Các bài toán sử sụng quy tắc cộng, quy tắc nhân Bài toán 8. Gieo đồng thời hai con súc sắc. Tính xác suất sao cho: Hai con súc sắc đều xuất hiện mặt chẵn. Tích số chấm trên 2 con súc sắc là số chẵn. Phân tích: Đối với bài toán này phần lớn học sinh đều giải bằng cách đếm số phần tử của biến cố. học sinh trung bình thường liệt kê phần tử và đếm trực tiếp. Tất nhiên là cách giải này rất dài và có thể làm sót phần tử dẫn tới giải sai. Học sinh khá hơn thì sử dụng tính toán để đếm số phần tử như sau: Ta có nΩ=36 Chọn A là biến cố “Hai con súc sắc đều xuất hiện mặt chẵn” Do đó A={(i,j)|i,j∈2,4,6} Có 3 cách chọn i∈2,4,6, với mỗi cách chọn i ta có 3 cách chọn j. Do đó có 9 cách chọn i,j∈A⇒nA=9 PA=nAnΩ=936=14=0,25 Tôi thấy rằng đây là một lời giải hợp lý, tuy nhiên bài toán này có thể được giải quyết một cách đơn giản hơn khi ta sử dụng quy tắc xác suất. Cho nên giáo viên có thể gợi mở, dẫn dắt học sinh để đi tới giải bài toán theo định hướng này như sau: Gọi A là biến cố “Con súc sắc thứ nhất xuất hiện mặt chẵn” B là biến cố “Con súc sắc thứ hai xuất hiện mặt chẵn” X là biến cố “Hai con súc sắc đều xuất hiện mặt chẵn” Thấy rằng A và B là hai biến cố độc lập và PA=PB= 36=12 (Trong 6 mặt thì có 3 mặt chẵn) Do vậy ta có: PX=PAB=PA.PB=12.12=14 Gọi Y là biến cố “Tích số chấm trên 2 con súc sắc là số chẵn” Có 3 khả năng xảy ra để tích số chấm trên con súc sắc là số chẵn: Con súc sắc thứ nhất xuất hiện mặt chẵn, con súc sắc thứ hai xuất hiện mặt lẻ. Con súc sắc thứ nhất xuất hiện mặt lẻ, con súc sắc thứ hai xuất hiện mặt chẵn. Cả hai con súc sắc cùng xuất hiện mặt chẵn. Và ta có Y: “Tích số chấm trên 2 con súc sắc là số lẻ” chỉ có 1 khả năng là cả hai con súc sắc đều xuất hiện mặt lẻ. Như vậy một lần nữa ta lại thấy ưu thế của biến cố đối. Ta có Y=AB và A, B độc lập nên ta có: PY=PA.PB=1-PA1-PB=1-121-12=14 Và do đó PY=1-PY=1-14=34 Bài toán trên ta đã sử dụng quy tắc nhân xác suất. Muốn sử dụng được quy tắc nhân phải khẳng định được hai biến cố là độc lập. Vậy hai biến cố thường độc lập trong các phép thử nào? Tất nhiên ở đây tôi không thể nêu tất cả mà chỉ đưa ra một số trường hợp quen thuộc Gieo hai đồng tiền hoặc gieo đồng tiền hai lần thì biến cố xảy ra trong lần gieo này độc lập với biến cố xảy ra trong lần gieo kia. Tương tự đối với con súc sắc. Hai xạ thủ bắn sung thì sự bắn trúng hay trượt của người này không ảnh hưởng tới người kia. Do đó các biến cố liên quan đến người này độc lập với biến cố liên quan đến người kia. Tương tự đối với một người bắn hai phát sung Có hai cái hòm đựng bóng. Lấy từ mỗi hòm ra một quả bóng thì biến cố lấy ra bóng của hòm này sẽ độc lập với biến cố lấy ra bóng ở hòm kia. Tương tự đối với bài toán lấy bi, lấy cầu... Chú ý rằng: Nếu A và B độc lập thì A và B ; A và B; A và B cũng độc lập Cũng giống như quy tắc cộng và quy tắc nhân trong toán tổ hợp, đối với biến cố xảy ra khả năng này hoặc khả năng kia thì ta sử dụng quy tắc cộng xác suất. Còn với biến cố thực hiện lien tiếp hai hành động thì ta dùng quy tắc nhân Bài toán 9. Trong hòm có 10 chi tiết, trong đó có 2 chi tiết hỏng. Tìm xác suất để khi lấy ngẫu nhiên 6 chi tiết thì có không quá 1 chi tiết hỏng. Phân tích: Trong 6 chi tiết thì có không quá 1 chi tiết hỏng nghĩa là không có chi tiết nào hỏng hoặc có một chi tiết hỏng. Bài toán này không thể giải theo dạng 1 mà phải sử dụng phép tính xác suất. Đây là bài toán dùng quy tắc cộng xác suất Lời giải Gọi A1 là biến cố “Trong 6 chi tiết lấy ra không có chi tiết nào hỏng” A2 là biến cố “trong 6 chi tiết lấy ra có 1 chi tiết hỏng” A là biến cố “Trong 6 chi tiết lấy ra có không quá 1 chi tiết hỏng” Khi đó A=A1∪A2. Do A1 và A2 xung khắc nhau nên PA=PA1+PA2 Số cách lấy ra 6 chi tiết từ 10 chi tiết là C106 ⇒nΩ=C106=210 Có 8 chi tiết không bị hỏng nên nA1=C86=28 Số cách lấy 5 chi tiết từ 8 chi tiết bị hỏng là C85 Số cách lấy 1 chi tiết từ 2 chi tiết hỏng là C21 Theo quy tắc nhân ta có nA2=C85.C21=112 Do vậy ta có: PA1=nA1nΩ=28210=215 PA2=nA2nΩ=112210=815 ⇒PA=PA1+PA2=215+815=23 Bài toán 10 Có hai hộp cùng chứa các quả cầu. Hộp thứ nhất có 7 quả cầu đỏ, 5 quả cầu xanh. Hộp thứ hai có 6 quả cầu đỏ, 4 quả cầu xanh. Từ mỗi hộp lấy ra ngẫu nhiên 1 quả cầu. Tính xác suất để 2 quả cầu lấy ra cùng màu đỏ. Tính xác suất để 2 quả cầu lấy ra cùng màu. Phân tích: Bài toán này vẫn có thể giải theo dạng 1, tuy nhiên việc giải rất dài dòng và phức tạp. Nếu sử dụng phối hợp quy tắc cộng và quy tắc nhân thì việc giải quyết bài toán trở nên đơn giản hơn rất nhiều. Lời giải Gọi: A là biến cố “Quả cầu lấy ra từ hộp thứ nhất màu đỏ” B là biến cố “Quả cầu lấy ra từ hộp thứ hai màu đỏ” X là biến cố “Hai quả cầu lấy ra cùng màu đỏ” Ta có X=AB, PA= 712 ,PB= 610=35 Mặt khác A và B độc lập nên PX=PAB=712.35=720 Gọi: Y là biến cố “Hai quả cầu lấy ra cùng màu xanh” Z là biến cố “Hai quả cầu lấy ra cùng màu” Ta có Y=AB Mặt khác A và B độc lập nên P(Y)=PA.PB=1-PA1-PB=1-7121-35=16 Thấy rằng Z=X∪Y, X⋂Y=∅ nên PZ=PX+PY=720+16=3160 Những bài toán sử dụng quy tắc cộng xác suất và quy tắc nhân xác suất là các bài toán luôn tính được xác suất của biến cố cơ sở (các biến cố cần
File đính kèm:
- SKKN phuong phap giai toan xac suat.doc