Những bài Toán về bất đẳng thức trong các kì thi Quốc tế
Example 13 (Macedonia Team Selection Test 2007). Let a, b, c be positive real numbers.
Prove that
1 +
3
ab + bc + ca ≥
6
a + b + c.
Example 14 (Italian National Olympiad 2007). a) For each n ≥ 2, find the maximum
constant cn such that
1
a1 + 1
+
1
a2 + 1
+ . . . +
1
an + 1
≥ cn,
for all positive reals a1, a2, . . ., an such that a1a2 · · ·an = 1.
b) For each n ≥ 2, find the maximum constant dn such that
1
2a1 + 1
+
1
2a2 + 1
+ . . . +
1
2an + 1
≥ dn
for all positive reals a1, a2, . . ., an such that a1a2 · · ·an = 1
+ (y + z)2 + (z + x)2)(x+ y + z) + 4(x+ y)(y + z)(z + x) 3 = 4(x3 + y3 + z3 + 3x2y + 3xy2 + 3y2z + 3yz2 + 3z2x+ 3zx2 + 5xyz) 3 = 4((x+ y + z)3 − xyz) 3 = 4(26 27 (x+ y + z)3 + (x+y+z 3 )3 − xyz) 3 ≥ 4( 26 27(x+ y + z) 3) 3 = 13 3 . Solution 6 (2, DDucLam). Using the familiar Inequality (equivalent to Schur) abc ≥ (b+ c− a)(c + a − b)(a+ b− c) ⇒ abc ≥ 4 3 (ab+ bc+ ca)− 3. Therefore P ≥ a2 + b2 + c2 + 16 9 (ab+ bc+ ca) − 4 = (a+ b+ c)2 − 2 9 (ab+ bc+ ca)− 4 ≥ 5− 2 27 (a+ b+ c)2 = 4 + 1 3 . Equality holds when a = b = c = 1. Solution 7 (3, pi3.14). With the conventional denotion in triangle, we have abc = 4pRr , a2 + b2 + c2 = 2p2 − 8Rr − 2r2. Therefore a2 + b2 + c2 + 4 3 abc = 9 2 − 2r2. Moreover, p ≥ 3 √ 3r ⇒ r2 ≤ 1 6 . Thus a2 + b2 + c2 + 4 3 abc ≥ 41 3 . 14 www.batdangthuc.net ∇ Problem 5 (7, China Northern Mathematical Olympiad 2007). Let a, b, c be positive real numbers such that abc = 1. Prove that ak a+ b + bk b+ c + ck c+ a ≥ 3 2 . for any positive integer k ≥ 2. Solution 8 (Secrets In Inequalities, hungkhtn). We have ak a + b + bk b+ c + ck c+ a ≥ 3 2 ⇔ ak−1 + bk−1 + ck−1 ≥ 3 2 + ak−1b a+ b + bk−1c b + c + ck−1a c+ a By AM-GM Inequality, we have a+ b ≥ 2 √ ab, b+ c ≥ 2 √ bc, c+ a ≥ 2√ca. So, it remains to prove that ak− 3 2 b 1 2 + bk− 3 2 c 1 2 + ck− 3 2 a 1 2 + 3 ≤ 2 (ak−1 + bk−1 + ck−1) . This follows directly by AM-GM inequality, since ak−1 + bk−1 + ck−1 ≥ 3 3 √ ak−1bk−1ck−1 = 3 and (2k − 3)ak−1 + bk−1 ≥ (2k − 2)ak−32 b 12 (2k − 3)bk−1 + ck−1 ≥ (2k − 2)bk−32 c 12 (2k − 3)ck−1 + ak−1 ≥ (2k − 2)ck−32 a 12 Adding up these inequalities, we have the desired result. ∇ Problem 6 (8, Revised by NguyenDungTN). Let a, b, c > 0 such that a + b + c = 1. Prove that: a2 b + b2 c + c2 a ≥ 3(a2 + b2 + c2). www.batdangthuc.net 15 Solution 9. By Cauchy-Schwarz Inequality: a2 b + b2 c + c2 a ≥ (a 2 + b2 + c2)2 a2b + b2c + c2a . It remains to prove that (a2 + b2 + c2)2 a2b+ b2c + c2a ≥ 3(a2 + b2 + c2) ⇔ (a2 + b2 + c2)(a+ b+ c) ≥ 3(a2b+ b2c+ c2a) ⇔ a3 + b3 + c3 + ab2 + bc2 + ca2 ≥ 2(a2b+ b2c+ c2a) ⇔ a(a − b)2 + b(b− c)2 + c(c − a)2 ≥ 0. So we are done! Solution 10 (2, By Zaizai). a2 b + b2 c + c2 a ≥ 3(a2 + b2 + c2) ⇔ ∑(a2 b − 2a+ b ) ≥ 3(a2 + b2 + c2)− (a+ b+ c)2 ⇔ ∑ (a− b)2 b ≥ (a − b)2 + (b − c)2 + (c− a)2 ⇔ ∑ (a− b)2 ( 1 b − 1 ) ≥ 0 ⇔ ∑ (a− b)2(a + c) b ≥ 0. This ends the solution, too. ∇ Problem 7 (9, Romania Junior Balkan Team Selection Tests 2007). . Let a, b, c be three positive reals such that 1 a + b+ 1 + 1 b+ c+ 1 + 1 c+ a + 1 ≥ 1. Show that a + b+ c ≥ ab+ bc+ ca. Solution 11 (Mathlinks, Reposted by NguyenDungTN). By Cauchy-Schwarz Inequality, we have (a + b+ 1)(a+ b+ c2) ≥ (a+ b+ c)2. 16 www.batdangthuc.net Therefore 1 a + b+ 1 ≤ c 2 + a+ b (a+ b+ c)2 , or 1 a+ b+ 1 + 1 b+ c+ 1 + 1 c+ a+ 1 ≤ a 2 + b2 + c2 + 2(a+ b+ c) (a + b+ c)2 ⇒ a2 + b2 + c2 + 2(a+ b+ c) ≥ (a+ b+ c)2 ⇒ a+ b+ c ≥ ab+ bc+ ca. Solution 12 (DDucLam). Assume that a+ b+ c = ab+ bc+ ca, we have to prove that 1 a+ b+ 1 + 1 b+ c + 1 + 1 c+ a+ 1 ≤ 1 ⇔ a + b a+ b+ 1 + b+ c b+ c+ 1 + c+ a c+ a+ 1 ≥ 2 By Cauchy-Schwarz Inequality, LHS ≥ (a+ b+ b+ c+ c + a) 2∑ cyc(a+ b)(a+ b+ 1) = 2. We are done Comment. This second very beautiful solution uses Contradiction method. If you can't understand the principal of this method, have a look at Sang Tao Bat Dang Thuc, or Secrets In Inequalities, written by Pham Kim Hung. ∇ Problem 8 (10, Romanian JBTST V 2007). Let x, y, z be non-negative real numbers. Prove that x3 + y3 + z3 3 ≥ xyz + 3 4 |(x− y)(y − z)(z − x)|. Solution 13 (vandhkh). We have x3 + y3 + z3 3 ≥ xyz + 3 4 |(x− y)(y − z)(z − x)| ⇔ x 3 + y3 + z3 3 − xyz ≥ 3 4 |(x− y)(y − z)(z − x)| ⇔ ((x−y)2+(y−z)2 +(z−x)2(((x+y)+(y+ z)+(z +x)) ≥ 9|(x−y)(y−z)(z −x)|. Notice that x+ y ≥ |x− y|; y + z ≥ |y − z|; z + x ≥ |z − x|, and by AM-GM Inequality, ((x− y)2 + (y − z)2 + (z − x)2)(|x− y|+ |y − z|+ |z − x|) ≥ 9|(x− y)(y − z)(z − x)|. So we are done. Equality holds for x = y = z. www.batdangthuc.net 17 Solution 14 (Secrets In Inequalities, hungkhtn). The inequality is equivalent to (x+ y + z) ∑ (x − y)2 ≥ 9 2 |(x− y)(y − z)(z − x)|. By the entirely mixing variable method, it is enough to prove when z = 0 x3 + y3 ≥ 9 4 |xy(x − y)|. This last inequality can be checked easily. ∇ Problem 9 (11, Yugoslavia National Olympiad 2007). Let k be a given natural number. Prove that for any positive numbers x, y, z with the sum 1, the following inequality holds xk+2 xk+1 + yk + zk + yk+2 yk+1 + zk + xk + zk+2 zk+1 + xk + yk ≥ 1 7 . When does equality occur? Solution 15 (NguyenDungTN). We can assume that x ≥ y ≥ z. By this assumption, easy to refer that xk+1 xk+1 + yk + zk ≥ y k+1 yk+1 + zk + xk ≥ z k+1 zk+1 + xk + yk ; zk+1 + yk + xk ≥ yk+1 + xk + zk ≥ xk+1 + zk + yk ; and xk ≥ yk ≥ zk. By Chebyshev Inequality, we have xk+2 xk+1 + yk + zk + yk+2 yk+1 + zk + xk + zk+2 zk+1 + xk + yk ≥ x+ y + z 3 ( xk+1 xk+1 + yk + zk + yk+1 yk+1 + zk + xk + zk+1 zk+1 + xk + yk ) = 1 3 ( xk+1 xk+1 + yk + zk + yk+1 yk+1 + zk + xk + zk+1 zk+1 + xk + yk )∑ cyc(x k+1 + yk + zk)∑ cyc(xk+1 + yk + zk) = 1 3 (∑ cyc ( xk+1 xk+1 + yk + zk ∑ cyc (xk+1 + yk + zk) 1∑ cyc(xk+1 + yk + zk) )) ≥ 1 3 (xk+1+yk+1+zk+1). 1∑ cyc(xk+1 + yk + zk) = xk+1 + yk+1 + zk+1 xk+1 + yk+1 + zk+1 + 2(xk + yk + zk) 18 www.batdangthuc.net Also by Chebyshev Inequality, 3(xk+1 + yk+1 + zk+1) ≥ 3x+ y + z 3 (xk + yk + zk) = xk + yk + zk. Thus xk+1 + yk+1 + zk+1 xk+1 + yk+1 + zk+1 + 2(xk + yk + zk) ≥ x k+1 + yk+1 + zk+1 xk+1 + yk+1 + zk+1 + 6(xk+1 + yk+1 + zk+1) = 1 7 . So we are done. Equality holds for a = b = c = 1 3 . ∇ Problem 10 (Macedonia Team Selection Test 2007). Let a, b, c be positive real numbers. Prove that 1 + 3 ab+ bc+ ca ≥ 6 a + b+ c . Solution 16 (VoDanh). The inequality is equivalent to a+ b+ c+ 3(a+ b+ c) ab+ bc+ ca ≥ 6. By AM-GM Inequality, a+ b+ c+ 3(a+ b+ c) ab+ bc+ ca ≥ 2 √ 3(a+ b+ c)2 ab+ bc+ ca . It is obvious that (a+ b+ c)2 ≥ 3(ab+ bc+ ca), so we are done! ∇ Problem 11 (14, Italian National Olympiad 2007). a). For each n ≥ 2, find the maximum constant cn such that: 1 a1 + 1 + 1 a2 + 1 + . . .+ 1 an + 1 ≥ cn, for all positive reals a1, a2, . . . , an such that a1a2 · · ·an = 1. ∇ b). For each n ≥ 2, find the maximum constant dn such that 1 2a1 + 1 + 1 2a2 + 1 + . . .+ 1 2an + 1 ≥ dn, for all positive reals a1, a2, . . . , an such that a1a2 · · ·an = 1. www.batdangthuc.net 19 Solution 17 (Mathlinks, reposted by NguyenDungTN). a). Let a1 = n−1, ak = 1 ∀k 6= 1, then let → 0, we easily get cn ≤ 1. We will prove the inequality with this value of cn. Without loss of generality, assume that a1 ≤ a2 ≤ · · · ≤ an. Since a1a2 ≤ 1, we have n∑ k=1 1 ak + 1 ≥ 1 a1 + 1 + 1 a2 + 1 = 1 a1 + 1 + a1 a2 + a1a2 ≥ 1 a1 + 1 + a1 a1 + 1 = 1. This ends the proof. b). Consider n = 2, it is easy to get d2 = 23 . Indeed, let a1 = a, a2 = 1 a . The inequality becomes 1 2a+ 1 + a a+ 2 ≥ 2 3 ⇔ 3(a+ 2) + 3a(2a+ 1) ≥ 2(2a+ 1)(a+ 2) ⇔ (a − 1)2 ≥ 0. When n ≥ 3, similar to (a), we will show that dn = 1. Indeed, without loss of generality, we may assume that a1 ≤ a2 ≤ · · · ≤ an ⇒ a1a2a3 ≤ 1. Let x = 9 √ a2a3 a21 , y = 9 √ a1a3 a22 , z = 9 √ a1a2 a23 then a1 ≤ 1x3 , a2 ≤ 1y3 , a3 ≤ 1z3 , xyz = 1. Thus n∑ k=1 1 ak + 1 ≥ 3∑ k=1 1 ak + 1 ≥ x 3 x3 + 2 + y3 y3 + 2 + z3 z3 + 2 = x2 x2 + 2yz + y2 y2 + 2xz + z2 z2 + 2xy ≥ x 2 x2 + y2 + z2 + y2 x2 + y2 + z2 + z2 x2 + y2 + z2 = 1. This ends the proof. ∇ Problem 12 (15, France Team Selection Test 2007). . Let a, b, c, d be positive reals such that a+ b+ c+ d = 1. Prove that: 6(a3 + b3 + c3 + d3) ≥ a2 + b2 + c2 + d2 + 1 8 . 20 www.batdangthuc.net Solution 18 (NguyenDungTN). By AM-GM Inequality 2a3 + 1 43 ≥ 3a 2 4 a2 + 1 42 ≥ a 2 . Therefore 6(a3 + b3 + c3 + d3) + 3 16 ≥ 9(a 2 + b2 + c2 + d2) 4 5(a2 + b2 + c2 + d2) 4 + 5 16 ≥ 5(a+ b+ c+ d 8 = 5 8 Adding up two of them, we get 6(a3 + b3 + c3 + d3) ≥ a2 + b2 + c2 + d2 + 1 8 Solution 19 (Zaizai). We known that 6a3 ≥ a2 + 5a 8 − 1 8 ⇔ (4a− 1) 2(3a+ 1) 8 ≥ 0 Adding up four similar inequalities, we are done! ∇ Problem 13 (16, Revised by NguyenDungTN). Suppose a, b and c are positive real numbers. Prove that a+ b+ c 3 ≤ √ a2 + b2 + c2 3 ≤ 1 3 ( bc a + ca b + ab c ) . Solution 20. The left-hand inequality is just Cauchy-Schwarz Inequality. We will prove the right one. Let bc a = x, ca b = y, ab c = z. The inequality becomes √ xy + yz + zx 3 ≤ x+ y + z 3 . Squaring both sides, the inequality becomes (x+ y + z)2 ≥ 3(xy + yz + zx)⇔ (x− y)2 + (y − z)2 + (z − x)2 ≥ 0, which is obviously true. ∇ Problem 14 (17, Vietnam Team Selection Test 2007). Given a triangle ABC. Find the minimum of: ∑ (cos2(A2 )(cos2(B2 ) cos2(C2 ) www.batdangthuc.net 21 Solution 21 (pi3.14). We have T = ∑ (cos2(A2 )(cos2(B2 ) (cos2(C2 ) = ∑ (1 + cosA)(1 + cosB) 2(1 + cosC) . Let a = tanA 2 ; b = tanB 2 ; c = tanC 2 . We have ab+ bc+ ca = 1. So T = ∑ (1 + a2) (1 + b2)(1 + c2) = ∑ 1 (1+b2)(1+c2) 1+a2 = ∑ 1 (ab+bc+ca+b2)(ab+bc+ca+c2) (ab+bc+ca+a2) = ∑ 1 (a+b)(c+b)(a+c)(b+c) (b+a)(b+c) = ∑ 1 (b+ c)2 By Iran96 Inequality, we have 1 (b+ c)2 + 1 (c+ a)2 + 1 (a+ b)2 ≥ 9 4(ab+ bc+ ca) . Thus F ≥ 9 4 Equality holds when ABC is equilateral. ∇ Problem 15 (18, Greece National Olympiad 2007). . Let a, b, c be sides of a triangle, show that (b+ c− a)4 a(a+ b− c) + (c+ a− b)4 b(b+ c− a) + (b + c− a)4 a(c+ a− b) ≥ ab+ bc+ ca. Solution 22 (NguyenDungTN). Since a, b, c are three sides of a triangle, we can substitut
File đính kèm:
- Truyen nhan BDTTuan AnhNga Dien.pdf