Những bài Toán về bất đẳng thức trong các kì thi Quốc tế

Example 13 (Macedonia Team Selection Test 2007). Let a, b, c be positive real numbers.

Prove that

1 +

3

ab + bc + ca ≥

6

a + b + c.

Example 14 (Italian National Olympiad 2007). a) For each n ≥ 2, find the maximum

constant cn such that

1

a1 + 1

+

1

a2 + 1

+ . . . +

1

an + 1

≥ cn,

for all positive reals a1, a2, . . ., an such that a1a2 · · ·an = 1.

b) For each n ≥ 2, find the maximum constant dn such that

1

2a1 + 1

+

1

2a2 + 1

+ . . . +

1

2an + 1

≥ dn

for all positive reals a1, a2, . . ., an such that a1a2 · · ·an = 1

pdf31 trang | Chia sẻ: lethuong715 | Lượt xem: 565 | Lượt tải: 0download
Bạn đang xem trước 20 trang mẫu tài liệu Những bài Toán về bất đẳng thức trong các kì thi Quốc tế, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
+ (y + z)2 + (z + x)2)(x+ y + z) + 4(x+ y)(y + z)(z + x)
3
=
4(x3 + y3 + z3 + 3x2y + 3xy2 + 3y2z + 3yz2 + 3z2x+ 3zx2 + 5xyz)
3
=
4((x+ y + z)3 − xyz)
3
=
4(26
27
(x+ y + z)3 + (x+y+z
3
)3 − xyz)
3
≥ 4(
26
27(x+ y + z)
3)
3
=
13
3
.
Solution 6 (2, DDucLam). Using the familiar Inequality (equivalent to Schur)
abc ≥ (b+ c− a)(c + a − b)(a+ b− c) ⇒ abc ≥ 4
3
(ab+ bc+ ca)− 3.
Therefore
P ≥ a2 + b2 + c2 + 16
9
(ab+ bc+ ca) − 4
= (a+ b+ c)2 − 2
9
(ab+ bc+ ca)− 4 ≥ 5− 2
27
(a+ b+ c)2 = 4 +
1
3
.
Equality holds when a = b = c = 1.
Solution 7 (3, pi3.14). With the conventional denotion in triangle, we have
abc = 4pRr , a2 + b2 + c2 = 2p2 − 8Rr − 2r2.
Therefore
a2 + b2 + c2 +
4
3
abc =
9
2
− 2r2.
Moreover,
p ≥ 3
√
3r ⇒ r2 ≤ 1
6
.
Thus
a2 + b2 + c2 +
4
3
abc ≥ 41
3
.
14 www.batdangthuc.net
∇
Problem 5 (7, China Northern Mathematical Olympiad 2007). Let a, b, c be positive
real numbers such that abc = 1. Prove that
ak
a+ b
+
bk
b+ c
+
ck
c+ a
≥ 3
2
.
for any positive integer k ≥ 2.
Solution 8 (Secrets In Inequalities, hungkhtn). We have
ak
a + b
+
bk
b+ c
+
ck
c+ a
≥ 3
2
⇔ ak−1 + bk−1 + ck−1 ≥ 3
2
+
ak−1b
a+ b
+
bk−1c
b + c
+
ck−1a
c+ a
By AM-GM Inequality, we have
a+ b ≥ 2
√
ab, b+ c ≥ 2
√
bc, c+ a ≥ 2√ca.
So, it remains to prove that
ak−
3
2 b
1
2 + bk−
3
2 c
1
2 + ck−
3
2 a
1
2 + 3 ≤ 2 (ak−1 + bk−1 + ck−1) .
This follows directly by AM-GM inequality, since
ak−1 + bk−1 + ck−1 ≥ 3 3
√
ak−1bk−1ck−1 = 3
and
(2k − 3)ak−1 + bk−1 ≥ (2k − 2)ak−32 b 12
(2k − 3)bk−1 + ck−1 ≥ (2k − 2)bk−32 c 12
(2k − 3)ck−1 + ak−1 ≥ (2k − 2)ck−32 a 12
Adding up these inequalities, we have the desired result.
∇
Problem 6 (8, Revised by NguyenDungTN). Let a, b, c > 0 such that a + b + c = 1.
Prove that:
a2
b
+
b2
c
+
c2
a
≥ 3(a2 + b2 + c2).
www.batdangthuc.net 15
Solution 9. By Cauchy-Schwarz Inequality:
a2
b
+
b2
c
+
c2
a
≥ (a
2 + b2 + c2)2
a2b + b2c + c2a
.
It remains to prove that
(a2 + b2 + c2)2
a2b+ b2c + c2a
≥ 3(a2 + b2 + c2)
⇔ (a2 + b2 + c2)(a+ b+ c) ≥ 3(a2b+ b2c+ c2a)
⇔ a3 + b3 + c3 + ab2 + bc2 + ca2 ≥ 2(a2b+ b2c+ c2a)
⇔ a(a − b)2 + b(b− c)2 + c(c − a)2 ≥ 0.
So we are done!
Solution 10 (2, By Zaizai).
a2
b
+
b2
c
+
c2
a
≥ 3(a2 + b2 + c2)
⇔
∑(a2
b
− 2a+ b
)
≥ 3(a2 + b2 + c2)− (a+ b+ c)2
⇔
∑ (a− b)2
b
≥ (a − b)2 + (b − c)2 + (c− a)2
⇔
∑
(a− b)2
(
1
b
− 1
)
≥ 0
⇔
∑ (a− b)2(a + c)
b
≥ 0.
This ends the solution, too.
∇
Problem 7 (9, Romania Junior Balkan Team Selection Tests 2007). . Let a, b, c be three
positive reals such that
1
a + b+ 1
+
1
b+ c+ 1
+
1
c+ a + 1
≥ 1.
Show that
a + b+ c ≥ ab+ bc+ ca.
Solution 11 (Mathlinks, Reposted by NguyenDungTN). By Cauchy-Schwarz Inequality,
we have
(a + b+ 1)(a+ b+ c2) ≥ (a+ b+ c)2.
16 www.batdangthuc.net
Therefore
1
a + b+ 1
≤ c
2 + a+ b
(a+ b+ c)2
,
or
1
a+ b+ 1
+
1
b+ c+ 1
+
1
c+ a+ 1
≤ a
2 + b2 + c2 + 2(a+ b+ c)
(a + b+ c)2
⇒ a2 + b2 + c2 + 2(a+ b+ c) ≥ (a+ b+ c)2
⇒ a+ b+ c ≥ ab+ bc+ ca.
Solution 12 (DDucLam). Assume that a+ b+ c = ab+ bc+ ca, we have to prove that
1
a+ b+ 1
+
1
b+ c + 1
+
1
c+ a+ 1
≤ 1
⇔ a + b
a+ b+ 1
+
b+ c
b+ c+ 1
+
c+ a
c+ a+ 1
≥ 2
By Cauchy-Schwarz Inequality,
LHS ≥ (a+ b+ b+ c+ c + a)
2∑
cyc(a+ b)(a+ b+ 1)
= 2.
We are done
Comment. This second very beautiful solution uses Contradiction method. If you can't
understand the principal of this method, have a look at Sang Tao Bat Dang Thuc, or Secrets
In Inequalities, written by Pham Kim Hung.
∇
Problem 8 (10, Romanian JBTST V 2007). Let x, y, z be non-negative real numbers.
Prove that
x3 + y3 + z3
3
≥ xyz + 3
4
|(x− y)(y − z)(z − x)|.
Solution 13 (vandhkh). We have
x3 + y3 + z3
3
≥ xyz + 3
4
|(x− y)(y − z)(z − x)|
⇔ x
3 + y3 + z3
3
− xyz ≥ 3
4
|(x− y)(y − z)(z − x)|
⇔ ((x−y)2+(y−z)2 +(z−x)2(((x+y)+(y+ z)+(z +x)) ≥ 9|(x−y)(y−z)(z −x)|.
Notice that
x+ y ≥ |x− y|; y + z ≥ |y − z|; z + x ≥ |z − x|,
and by AM-GM Inequality,
((x− y)2 + (y − z)2 + (z − x)2)(|x− y|+ |y − z|+ |z − x|) ≥ 9|(x− y)(y − z)(z − x)|.
So we are done. Equality holds for x = y = z.
www.batdangthuc.net 17
Solution 14 (Secrets In Inequalities, hungkhtn). The inequality is equivalent to
(x+ y + z)
∑
(x − y)2 ≥ 9
2
|(x− y)(y − z)(z − x)|.
By the entirely mixing variable method, it is enough to prove when z = 0
x3 + y3 ≥ 9
4
|xy(x − y)|.
This last inequality can be checked easily.
∇
Problem 9 (11, Yugoslavia National Olympiad 2007). Let k be a given natural number.
Prove that for any positive numbers x, y, z with the sum 1, the following inequality holds
xk+2
xk+1 + yk + zk
+
yk+2
yk+1 + zk + xk
+
zk+2
zk+1 + xk + yk
≥ 1
7
.
When does equality occur?
Solution 15 (NguyenDungTN). We can assume that x ≥ y ≥ z. By this assumption, easy
to refer that
xk+1
xk+1 + yk + zk
≥ y
k+1
yk+1 + zk + xk
≥ z
k+1
zk+1 + xk + yk
;
zk+1 + yk + xk ≥ yk+1 + xk + zk ≥ xk+1 + zk + yk ;
and
xk ≥ yk ≥ zk.
By Chebyshev Inequality, we have
xk+2
xk+1 + yk + zk
+
yk+2
yk+1 + zk + xk
+
zk+2
zk+1 + xk + yk
≥ x+ y + z
3
(
xk+1
xk+1 + yk + zk
+
yk+1
yk+1 + zk + xk
+
zk+1
zk+1 + xk + yk
)
=
1
3
(
xk+1
xk+1 + yk + zk
+
yk+1
yk+1 + zk + xk
+
zk+1
zk+1 + xk + yk
)∑
cyc(x
k+1 + yk + zk)∑
cyc(xk+1 + yk + zk)
=
1
3
(∑
cyc
(
xk+1
xk+1 + yk + zk
∑
cyc
(xk+1 + yk + zk)
1∑
cyc(xk+1 + yk + zk)
))
≥ 1
3
(xk+1+yk+1+zk+1).
1∑
cyc(xk+1 + yk + zk)
=
xk+1 + yk+1 + zk+1
xk+1 + yk+1 + zk+1 + 2(xk + yk + zk)
18 www.batdangthuc.net
Also by Chebyshev Inequality,
3(xk+1 + yk+1 + zk+1) ≥ 3x+ y + z
3
(xk + yk + zk) = xk + yk + zk.
Thus
xk+1 + yk+1 + zk+1
xk+1 + yk+1 + zk+1 + 2(xk + yk + zk)
≥ x
k+1 + yk+1 + zk+1
xk+1 + yk+1 + zk+1 + 6(xk+1 + yk+1 + zk+1)
=
1
7
.
So we are done. Equality holds for a = b = c =
1
3
.
∇
Problem 10 (Macedonia Team Selection Test 2007). Let a, b, c be positive real numbers.
Prove that
1 +
3
ab+ bc+ ca
≥ 6
a + b+ c
.
Solution 16 (VoDanh). The inequality is equivalent to
a+ b+ c+
3(a+ b+ c)
ab+ bc+ ca
≥ 6.
By AM-GM Inequality,
a+ b+ c+
3(a+ b+ c)
ab+ bc+ ca
≥ 2
√
3(a+ b+ c)2
ab+ bc+ ca
.
It is obvious that (a+ b+ c)2 ≥ 3(ab+ bc+ ca), so we are done!
∇
Problem 11 (14, Italian National Olympiad 2007). a). For each n ≥ 2, find the maximum
constant cn such that:
1
a1 + 1
+
1
a2 + 1
+ . . .+
1
an + 1
≥ cn,
for all positive reals a1, a2, . . . , an such that a1a2 · · ·an = 1.
∇
b). For each n ≥ 2, find the maximum constant dn such that
1
2a1 + 1
+
1
2a2 + 1
+ . . .+
1
2an + 1
≥ dn,
for all positive reals a1, a2, . . . , an such that a1a2 · · ·an = 1.
www.batdangthuc.net 19
Solution 17 (Mathlinks, reposted by NguyenDungTN). a). Let
a1 = n−1, ak =
1

∀k 6= 1,
then let  → 0, we easily get cn ≤ 1. We will prove the inequality with this value of cn.
Without loss of generality, assume that a1 ≤ a2 ≤ · · · ≤ an. Since a1a2 ≤ 1, we have
n∑
k=1
1
ak + 1
≥ 1
a1 + 1
+
1
a2 + 1
=
1
a1 + 1
+
a1
a2 + a1a2
≥ 1
a1 + 1
+
a1
a1 + 1
= 1.
This ends the proof.
b). Consider n = 2, it is easy to get d2 = 23 . Indeed, let a1 = a, a2 =
1
a . The inequality
becomes
1
2a+ 1
+
a
a+ 2
≥ 2
3
⇔ 3(a+ 2) + 3a(2a+ 1) ≥ 2(2a+ 1)(a+ 2)
⇔ (a − 1)2 ≥ 0.
When n ≥ 3, similar to (a), we will show that dn = 1. Indeed, without loss of generality,
we may assume that
a1 ≤ a2 ≤ · · · ≤ an ⇒ a1a2a3 ≤ 1.
Let
x = 9
√
a2a3
a21
, y = 9
√
a1a3
a22
, z = 9
√
a1a2
a23
then a1 ≤ 1x3 , a2 ≤ 1y3 , a3 ≤ 1z3 , xyz = 1. Thus
n∑
k=1
1
ak + 1
≥
3∑
k=1
1
ak + 1
≥ x
3
x3 + 2
+
y3
y3 + 2
+
z3
z3 + 2
=
x2
x2 + 2yz
+
y2
y2 + 2xz
+
z2
z2 + 2xy
≥ x
2
x2 + y2 + z2
+
y2
x2 + y2 + z2
+
z2
x2 + y2 + z2
= 1.
This ends the proof.
∇
Problem 12 (15, France Team Selection Test 2007). . Let a, b, c, d be positive reals such
that a+ b+ c+ d = 1. Prove that:
6(a3 + b3 + c3 + d3) ≥ a2 + b2 + c2 + d2 + 1
8
.
20 www.batdangthuc.net
Solution 18 (NguyenDungTN). By AM-GM Inequality
2a3 +
1
43
≥ 3a
2
4
a2 +
1
42
≥ a
2
.
Therefore
6(a3 + b3 + c3 + d3) +
3
16
≥ 9(a
2 + b2 + c2 + d2)
4
5(a2 + b2 + c2 + d2)
4
+
5
16
≥ 5(a+ b+ c+ d
8
=
5
8
Adding up two of them, we get
6(a3 + b3 + c3 + d3) ≥ a2 + b2 + c2 + d2 + 1
8
Solution 19 (Zaizai). We known that
6a3 ≥ a2 + 5a
8
− 1
8
⇔ (4a− 1)
2(3a+ 1)
8
≥ 0
Adding up four similar inequalities, we are done!
∇
Problem 13 (16, Revised by NguyenDungTN). Suppose a, b and c are positive real
numbers. Prove that
a+ b+ c
3
≤
√
a2 + b2 + c2
3
≤ 1
3
(
bc
a
+
ca
b
+
ab
c
)
.
Solution 20. The left-hand inequality is just Cauchy-Schwarz Inequality. We will prove the
right one. Let
bc
a
= x,
ca
b
= y,
ab
c
= z.
The inequality becomes √
xy + yz + zx
3
≤ x+ y + z
3
.
Squaring both sides, the inequality becomes
(x+ y + z)2 ≥ 3(xy + yz + zx)⇔ (x− y)2 + (y − z)2 + (z − x)2 ≥ 0,
which is obviously true.
∇
Problem 14 (17, Vietnam Team Selection Test 2007). Given a triangle ABC. Find the
minimum of: ∑ (cos2(A2 )(cos2(B2 )
cos2(C2 )
www.batdangthuc.net 21
Solution 21 (pi3.14). We have
T =
∑ (cos2(A2 )(cos2(B2 )
(cos2(C2 )
=
∑ (1 + cosA)(1 + cosB)
2(1 + cosC)
.
Let a = tanA
2
; b = tanB
2
; c = tanC
2
. We have ab+ bc+ ca = 1. So
T =
∑ (1 + a2)
(1 + b2)(1 + c2)
=
∑ 1
(1+b2)(1+c2)
1+a2
=
∑ 1
(ab+bc+ca+b2)(ab+bc+ca+c2)
(ab+bc+ca+a2)
=
∑ 1
(a+b)(c+b)(a+c)(b+c)
(b+a)(b+c)
=
∑ 1
(b+ c)2
By Iran96 Inequality, we have
1
(b+ c)2
+
1
(c+ a)2
+
1
(a+ b)2
≥ 9
4(ab+ bc+ ca)
.
Thus F ≥ 9
4
Equality holds when ABC is equilateral.
∇
Problem 15 (18, Greece National Olympiad 2007). . Let a, b, c be sides of a triangle,
show that
(b+ c− a)4
a(a+ b− c) +
(c+ a− b)4
b(b+ c− a) +
(b + c− a)4
a(c+ a− b) ≥ ab+ bc+ ca.
Solution 22 (NguyenDungTN). Since a, b, c are three sides of a triangle, we can substitut

File đính kèm:

  • pdfTruyen nhan BDTTuan AnhNga Dien.pdf