Một số đề thi giải Toán trên máy tính cầm tay

Câu 8 (6 điểm):

 a) Bạn Toán gửi tiết kiệm một số tiền ban đầu là 2000000 đồng với lãi suất 0,58% một tháng (gửi không kỳ hạn). Hỏi bạn Toán phải gửi bao nhiêu tháng thì được cả vốn lẫn lãi bằng hoặc vượt quá 2600000 đồng ?

 b) Với cùng số tiền ban đầu nhưng số tháng gửi ít hơn số tháng ở câu a) là 1 tháng, nếu bạn Toán gửi tiết kiệm có kỳ hạn 3 tháng với lãi suất 0,68% một tháng, thì bạn Toán sẽ nhận được số tiền cả vốn lẫn lãi là bao nhiêu? (Biết rằng trong các tháng của kỳ hạn, chỉ cộng thêm lãi chứ không cộng vốn và lãi tháng trước để tính lãi tháng sau. Hết một kỳ hạn, lãi sẽ được cộng vào vốn để tính lãi trong kỳ hạn tiếp theo).

 

doc77 trang | Chia sẻ: nguyenngoc | Lượt xem: 1712 | Lượt tải: 2download
Bạn đang xem trước 20 trang mẫu tài liệu Một số đề thi giải Toán trên máy tính cầm tay, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
37o25’ = 2,184154248 » 2,18 (cm)
b) 
HM=AH.cotg2α ; HD = AH.cotg(45o + α)
Vậy : 
= 0,32901612 » 0,33cm2
Bài 8 (6 điểm)
1. Giả sử BC = a, AC = b, AB = c, AM = ma.Ta phải chứng minh:b2 + c2 = + 
Kẻ thêm đường cao AH (H thuộc BC), ta có:
AC2 = HC2 + AH2 b2 = + AH2
AB2 = BH2 + AH2 c2 = + AH2
Vậy b2 + c2 = + 2(HM2 + AH2). Nhưng HM2 + AH2 = AM2 = Do đó b2 + c2 = 2 + (đpcm)
2. 
a) sin B = = B = 57o47’44,78”
b) sin C = = C = 45o35’4,89”; A = 180o – (B+C) A= 76o37’10,33”
BH = c cos B; CH = b cos C BC = BH + CH = c cos B + b cos C
 BC = 3,25 cos 57o48’ + 3,85 cos 45o35’ = 4,426351796 4,43cm
b) AM2 = AM2 = = 2,7918367512,79cm
c) SAHM =AH(BM – BH) =.2,75= 0,664334141 0,66cm2
Bài 9 (5 điểm)
a) U1 = 1 U5 = 147884
 U2 = 26 U6 = 2360280
 U3 = 510 U7 = 36818536
 U4 = 8944 U8 = 565475456
b) Đặt Un+1 = a.Un + b.Un-1
Theo kết quả tính được ở trên, ta có:
Giải hệ phương trình trên ta được: a = 26,b = -166
Vậy ta có công thức: Un+1 = 26Un – 166Un-1
c) Lập quy trình bấm phím trên máy CASIO 500MS:
Ấn phím:
26
Shift
STO
A
x
26
-
166
x
1
Shift
STO
B
Lặp lại dãy phím 
x
26
-
166
x
Alpha
A
Shift
STO
A
	x
26
-
166
x
Alpha
B
Shift
STO
B
Bài 10 (5 điểm) 
 a) Xem kết quả ở hình bên	
 b)
c) Phương trình đường phân giác góc BAC có dạng y = ax + b
Góc hợp bởi đường phân giác với trục hoành là , ta có:
Hệ số góc của đường phân giác góc BAC là 
Phương trình đường phân giác là y = 4x + b (3) vì 
thuộc đường thẳng (3) nên ta có: 
Vậy đường phân giác góc BAC có phương trình là 
§Ò chÝnh thøc
së GD&§T H¶i d­¬ng
kú thi gi¶i to¸n trªn m¸y tÝnh casio
n¨m häc 2005-2006
líp 9 THCS
Thêi gian lµm bµi 150 phót
 §Ò bµi (thÝ sinh lµm trªn giÊy thi)
Bµi 1 (6 ®iÓm)Gi¶i ph­¬ng tr×nh:
Tr¶ lêi: x = 8,586963434 
Bµi 2 (6 ®iÓm)Theo B¸o c¸o cña ChÝnh phñ d©n sè ViÖt Nam tÝnh ®Õn th¸ng 12 n¨m 2005 lµ 83,12 triÖu ng­êi, nÕu tØ lÖ t¨ng trung b×nh hµng n¨m lµ 1,33%. Hái d©n sè ViÖt nam vµo th¸ng 12 n¨m 2010 sÏ lµ bao nhiªu?
Tr¶ lêi: D©n sè ViÖt Nam ®Õn th¸ng 12-2010: 88796480 ng­êi
Bµi 3 (11 ®iÓm) Cho tam gi¸c ABC, AB = 7,071cm, AC = 8,246 cm, gãc = 59 0 02'10"
1) TÝnh diÖn tÝch cña tam gi¸c ABC.
2) TÝnh b¸n kÝnh ®­êng trßn néi tiÕp tam gi¸c ABC.
3) TÝnh chu vi nhá nhÊt cña tam gi¸c cã ba ®Ønh n»m trªn ba c¹nh cña tam gi¸c ABC.
Tr¶ lêi: 1) DiÖn tÝch tam gi¸c ABC: 24,99908516 (4 ®iÓm)
2) B¸n kÝnh ®­êng trßn néi tiÕp tam gi¸c ABC: 2,180222023 (3 ®iÓm)
3) Chu vi nhá nhÊt cña tam gi¸c 11,25925473 (4 ®iÓm)
Bµi 4 (6 ®iÓm)T×m sè tù nhiªn n tho¶ m·n ®¼ng thøc
 = 805 
 	([x] lµ sè nguyªn lín nhÊt kh«ng v­ît qu¸ x)
Tr¶ lêi: n = 118
Bµi 5 (6 ®iÓm)Cho d·y sè ( ) ®­îc x¸c ®Þnh nh­ sau:
 ; ; víi mäi . TÝnh ?
Tr¶ lêi: = 13981014
Bµi 6 (7, 0 ®iÓm)Cho . TÝnh 
Tr¶ lêi: A = -1,873918408
Bµi 7 (8, 0 ®iÓm) Cho hai biÓu thøc P = ; Q = 	
 1) X¸c ®Þnh a, b, c ®Ó P = Q víi mäi x ¹ 5.	2) TÝnh gi¸ trÞ cña P khi .
Tr¶ lêi: 1) a = 3 ; b = 2005 ; c = 76 (4 ®iÓm)
 2) P = - 17,99713 ; khi (4 ®iÓm)
së GD&§T H¶i d­¬ng
§Ò chÝnh thøc
***@***
Kú thi chän häc sinh giái gi¶i to¸n trªn m¸y tÝnh casio líp 9 - N¨m häc 2004-2005
Thêi gian lµm bµi 150 phót
=============
Bµi 1(2, 0 ®iÓm) Gi¶i hÖ ph­¬ng tr×nh:
Bµi 2(2, 0 ®iÓm) Khi ta chia 1 cho 49. Ch÷ sè thËp ph©n thø 2005 sau dÊu phÈy lµ ch÷ sè nµo? 
Bµi 3(2, 0 ®iÓm)Mét ng­êi göi 10 triÖu ®ång vµo ng©n hµng trong thêi gian 10 n¨m víi l·i suÊt 5% mét n¨m. Hái r»ng ng­êi ®ã nhËn ®­îc sè tiÒn nhiÒu h¬n hay Ýt h¬n bao nhiªu nÕu ng©n hµng tr¶ l·i suÊt % mét th¸ng.
Bµi 4(3, 0 ®iÓm) D·y sè un ®­îc x¸c ®Þnh nh­ sau: u0 = 1; u1 = 1; un+1= 2un - un-1 + 2, víi n = 1, 2, …
LËp mét qui tr×nh bÊm phÝm ®Ó tÝnh un;
TÝnh c¸c gi¸ trÞ cña un , khi n = 1, 2, …,20.
Bµi 5(2, 0 ®iÓm)T×m gi¸ trÞ chÝnh x¸c cña 10384713.
Bµi 6(2, 0 ®iÓm) Cho ®a thøc P(x) = x4 +5x3 - 3x2 + x - 1. TÝnh gi¸ trÞ cña P(1,35627). 
Bµi 7(2, 0 ®iÓm)Cho h×nh thang c©n ABCD (AB lµ c¹nh ®¸y nhá) vµ hai ®­êng chÐo AC, BD vu«ng gãc víi nhau, AB =15,34 cm, AD =BC =20,35cm. TÝnh diÖn tÝch h×nh thang c©n ABCD vµ c¹nh ®¸y CD.
Bµi 8(3, 0 ®iÓm) Cho tam gi¸c ABC (A = 900), AB = 3,74 , AC = 4,51;
TÝnh ®­êng cao AH, vµ tÝnh gãc B theo ®é phót gi©y;
§­êng ph©n gi¸c kÎ tõ A c¾t BC t¹ D. TÝnh AD vµ BD.
Bµi 9(2, 0 ®iÓm) Cho P(x) = x3 + ax2 + bx - 1
X¸c ®Þnh sè h÷u tØ a vµ b ®Ó x = lµ nghiÖm cña P(x);
Víi gi¸ trÞ a, b t×m ®­îc h·y t×m c¸c nghiÖm cßn l¹i cña P(x).
_________________
H­íng dÉn vµ ®¸p ¸n ®Ò thi gi¶i to¸n trªn m¸y casio líp 9
Bµi 1: x » 1, 518365287 ; y = 4, 124871738
Bµi 2: 1 chia cho 49 ta ®­îc sè thËp ph©n v« h¹n tuÇn hoµn chu kú gåm 42 ch÷ sè 0,(020408163265306122448979591836734693877551) vËy ch÷ sè 2005 øng víi ch÷ sè d­ khi chia 2005 cho 42; 2005=47.42+31 do ®ã ch÷ sè 2005 øng víi ch÷ sè thø 31 lµ sè 7.
Bµi 3: Gäi sè a lµ tiÒn göi tiÕt kiÖm ban ®Çu, r lµ l·i suÊt, sau 1 th¸ng: sÏ lµ a(1+r) … sau n th¸ng sè tiÒn c¶ gèc l·i A = a(1 + r)n Þ sè tiÒn sau 10 n¨m: 10000000(1+)10 = 162889462, 7 ®ång
Sè tiÒn nhËn sau 10 n¨m (120 th¸ng) víi l·i suÊt 5/12% mét th¸ng:
 10000000(1 + )120 = 164700949, 8 ®ång Þ sè tiÒn göi theo l·i suÊt 5/12% mét th¸ng nhiÒu h¬n: 1811486,1 ®ång
Bµi 4fx500MS : (SHIFT)(STO)(A)( ´)2(-)1(SHIFT)(STO)(B) lÆp l¹i
(´)2(-)(ALPHA)(A)(+)(SHIFT)(STO)(A)(´)2(-)(ALPHA)(B)(+)2(SHIFT)(STO)(B)
2) u1= 1, u2=3, u3 =7, u4 =13, u5 =21, u6 =31, u7 =43, u8 =57, u9 =73, u10 =91, u11 =111, u12 =133, u13 =157, u14 =183, u15 =211, u16 = 241, u17 =273 , u18 = 307, u19 =343, u20 =381.
Bµi 5: 10384713 = (138.103+471)3 tÝnh trªn giÊy céng l¹i: 10384713 =1119909991289361111
Bµi 6: f(1,35627) = 10,69558718
Bµi 7: C¹nh ®¸y lín 24, 35 cm; S = 393, 82cm2
Bµi 8: Sö dông vµ ®­êng ph©n gi¸c ;AH » 2, 879 ; B » 50019,55, ;.
Chøng minh , (sö dông ph­¬ng ph¸p diÖn tÝch);AD » 2,8914 ; BD » 2, 656
Bµi 9: x = 6-Þ b = =6+-(6-)2 - a(6-)
(a+13) = b+6a+65 = 0 Þ a = -13 ; b =13 Þ P(x) =x3-13x2+13x-1
(x-1)(x2-12x+1) = 0 Þ x = 1 ; x » 0,08392 vµ x » 11,916
UBND huyÖn cÈm giµng
Phßng gd&®t 
---***---
®Ò thi gi¶i to¸n trªn m¸y tÝnh casio
n¨m häc 2006-2007
Thêi gian : 150 phót
(kh«ng kÓ giao ®Ò)
C©u 1(1®) T×m x biÕt:
C©u 2(1,5®)
a)Cho ph­¬ng tr×nh x3+x2-1=0 cã mét nghiÖm thùc lµ x1. TÝnh gi¸ trÞ cña biÓu thøc 	
b)Gi¶i ph­¬ng tr×nh : (x-90)(x-35)(x+18)(x+7)=-1008x2(lÊy 6 ch÷ sè thËp ph©n)
C©u 3(2®)
a)Cho f(x) = 2x6-4x5+7x4-11x3-8x2+5x-2007. Gäi r1 vµ r2 lÇn l­ît lµ sè d­ cña phÐp chia f(x) cho x-1,12357 vµ x+0,94578. TÝnh B=0,(2006)r1-3,(2007)r2.
b)Cho f(x) = x5+x2+1 cã 5 nghiÖm lµ x1, x2, x3, x4, x5 vµ P(x) = x2-7. TÝnh P(x1)P(x2)P(x3)P(x4)P(x5).
C©u 4(1,5®)
	Ng­êi ta b¸n 2 con tr©u, 5 con cõu ®Ó mua 13 con lîn th× cßn thõa 1000 ®ång. §em b¸n 3 con tr©u , 3 con lîn råi mua chÝn con cõu th× võa ®ñ. Cßn nÕu b¸n 6 con cõu, 8 con lîn ®Ó mua 5 con tr©u th× cßn thiÕu 500 ®ång. Hái mçi con cõu, con tr©u, con lîn gi¸ bao nhiªu?
C©u 5(1®)
Cho gãc nhän a sao cho cos2a =0,5678. TÝnh :
TÝnh chÝnh x¸c gi¸ trÞ cña 1234567892
C©u 6(2®)
	Cho nh×nh vu«ng ABCD cã ®é dµi c¹nh lµ a=. Gäi I lµ trung ®iÓm cña AB. §iÓm H thuéc DI sao cho gãc AHI = 90o. 
	a)TÝnh diÖn tÝch tam gi¸c CHD. Tõ ®ã suy ra diÖn tÝch tø gi¸c BCHI.
	b)Cho I tïy ý thuéc AB, M tïy ý thuéc BC sao cho gãc MDI = 45o. TÝnh gi¸ trÞ lín nhÊt cña diÖn tÝch tam gi¸c DMI.
C©u 7(1®)
Cho f(x) =(1+x+x4)25=a0+a1x+a2x2+…+a100x100. TÝnh chÝnh x¸c gi¸ trÞ cña biÓu thøc A=a1+a3+a5+…+a99
-390,2316312
a)2009,498575
b)63;-10;
-10,88386249;
57,88376249.
5994,83710745
1200;500;300
0,296162102
15241578749590521
423644304721
Së gd&®t h¶i d­¬ng
Phßng gd&®t cÈm giµng
---***---
®Ò thi gi¶i to¸n trªn m¸y tÝnh casio
n¨m häc 2005-2006
Thêi gian : 150 phót
(kh«ng kÓ giao ®Ò)
C©u 1(1®) TÝnh
C©u 2(2®) T×m x biÕt 
	a) 
	b) 
C©u 3(2®) Cho c¸c ®a thøc F(x)= x4+5x3-4x2+3x+a
 G(x)=-3x4+4x3-3x2+2x+b; H(x)=5x5-x4-6x3+27x2-54x+32
a)T×m a, b ®Ó F(x) vµ G(x) cã nghiÖm chung lµ x=0,25
b)Sö dông c¸c phÝm nhí, lËp quy tr×nh bÊm phÝm t×m sè d­ trong phÐp chia Q(x) cho 2x+3. 
C©u 4(2®) Cho u1=a; u2=b; un+1=Mun+Nun-1. LËp quy tr×nh bÊm phÝm tÝnh un vµ tÝnh u13; u14; u15 víi a=2; b=3; M=4; N=5.
C©u 5(2®) Cho h×nh thang ABCD(AB//CD) cã . TÝnh AD;BC vµ ®­êng cao cña ht
C©u 6(1®) 
Cho h×nh th·ng c©n ABCD cã hsi ®­êng chÐo vu«ng gãc, ®¸y nhá AB=13,724; c¹nh bªn 21, 827. TÝnh diÖn tÝch h×nh th·ng( chÝnh x¸c ®Õn 0, 0001)
A=402283444622030
B=1660,6871955112
X=
X=-20,384
a=-0,58203125
b=-0,3632815
150,96875
Së gd&®t h¶i d­¬ng
Phßng gd&®t cÈm giµng
®Ò chÝnh thøc
®Ò thi gi¶i to¸n trªn m¸y tÝnh casio
n¨m häc 2004-2005
Thêi gian : 150 phót
(kh«ng kÓ giao ®Ò)
C©u1(3®): TÝnh gi¸ trÞ cña c¸c biÓu thøc sau
a) A = 
b) C = 
C©u2(3®): 
a)TÝnh gi¸ trÞ cña x tõ ph­¬ng tr×nh sau:
b)T×m c¸c sè tù nhiªn a vµ b biÕt r»ng:
C©u3(2®): Cho P(x) = x4 + 5x3 - 4x2 + 3x - 50. Gäi r1 lµ phÇn d­ cña phÐp chia P(x) cho x - 2 vµ r2 lµ phÇn d­ cña phÐp chia P(x) cho x - 3. ViÕt quy tr×nh tÝnh r1 vµ r2 sau ®ã t×m BCNN(r1;r2) ?
C©u4(2®):Cho Un+1 = Un + Un-1 , U1 = U2 = 1. TÝnh U25
C©u5(2®): Cho ®a thøc P(x) = x3 + ax2 + bx + c. BiÕt P(1) = -15; P(2) = -15; P(3) = -9.
a) T×m sè d­ khi chia P(x) cho x – 4 ?
b) T×m sè d­ khi chia P(x) cho 2x + 3 ?
C©u6(2,5®):Cho tam gi¸c vu«ng ABC cã AB = ; AC = . Gäi M , N , P thø tù lµ trung ®iÓm cña BC ; AC vµ AB. TÝnh tû sè chu vi cña DMNP vµ chu vi cña DABC ? ( ChÝnh x¸c ®Õn 6 ch÷ sè thËp ph©n)
C©u7(4®):
a)T×m c¸c sè tù nhiªn a, b, c, d, e biÕt 
b)Cho . TÝnh x+y?
C©u8(2®):
Mét ng­êi göi tiÕt kiÖm 1000 ®« trong 10 n¨m víi l·i suÊt 5% mét n¨m. Hái ng­êi ®ã nhËn ®­îc sè tiÒn nhiÒu h¬n hay Ýt h¬n nÕu ng©n hµng tr¶ l·i % mét th¸ng ( Lµm trßn ®Õn hai ch÷ sè thËp ph©n sau dÊu phÈy)
A=
C=
X=-11,33802463
A=7;b=9
R1=139; r2=-556
U25= 75025
9
0,5
A=82436; b=4;
C=2;d=1;e=18
45o
Theo th¸ng:
Theo n¨m:
Së gd&®t h¶i d­¬ng
Phßng gd&®t cÈm giµng
---***---
®Ò thi gi¶i to¸n trªn m¸y tÝnh casio
n¨m häc 2003-2004
Thêi gian : 150 phót
(kh«ng kÓ giao ®Ò)
C©u 1(3®) TÝnh : 
C©u 2(2®) 
	a)TÝnh 2,5% cña 
	b)TÝnh 7,5% cña 
C©u 3(2®) Cho hÖ ph­¬ng tr×nh . TÝnh 
C©u 4(3®) Cho u0=1; u1=3; un+1=un+un-1. TÝnh un víi n = 1;2;3;…; 10.
C©u 5(3®

File đính kèm:

  • doc30 ĐỀ CASIO 9-CÓ Đ.ÁN-CÁC TỈNH-09-10.doc
Giáo án liên quan