Một số đề thi giải Toán trên máy tính cầm tay
Câu 8 (6 điểm):
a) Bạn Toán gửi tiết kiệm một số tiền ban đầu là 2000000 đồng với lãi suất 0,58% một tháng (gửi không kỳ hạn). Hỏi bạn Toán phải gửi bao nhiêu tháng thì được cả vốn lẫn lãi bằng hoặc vượt quá 2600000 đồng ?
b) Với cùng số tiền ban đầu nhưng số tháng gửi ít hơn số tháng ở câu a) là 1 tháng, nếu bạn Toán gửi tiết kiệm có kỳ hạn 3 tháng với lãi suất 0,68% một tháng, thì bạn Toán sẽ nhận được số tiền cả vốn lẫn lãi là bao nhiêu? (Biết rằng trong các tháng của kỳ hạn, chỉ cộng thêm lãi chứ không cộng vốn và lãi tháng trước để tính lãi tháng sau. Hết một kỳ hạn, lãi sẽ được cộng vào vốn để tính lãi trong kỳ hạn tiếp theo).
37o25’ = 2,184154248 » 2,18 (cm) b) HM=AH.cotg2α ; HD = AH.cotg(45o + α) Vậy : = 0,32901612 » 0,33cm2 Bài 8 (6 điểm) 1. Giả sử BC = a, AC = b, AB = c, AM = ma.Ta phải chứng minh:b2 + c2 = + Kẻ thêm đường cao AH (H thuộc BC), ta có: AC2 = HC2 + AH2 b2 = + AH2 AB2 = BH2 + AH2 c2 = + AH2 Vậy b2 + c2 = + 2(HM2 + AH2). Nhưng HM2 + AH2 = AM2 = Do đó b2 + c2 = 2 + (đpcm) 2. a) sin B = = B = 57o47’44,78” b) sin C = = C = 45o35’4,89”; A = 180o – (B+C) A= 76o37’10,33” BH = c cos B; CH = b cos C BC = BH + CH = c cos B + b cos C BC = 3,25 cos 57o48’ + 3,85 cos 45o35’ = 4,426351796 4,43cm b) AM2 = AM2 = = 2,7918367512,79cm c) SAHM =AH(BM – BH) =.2,75= 0,664334141 0,66cm2 Bài 9 (5 điểm) a) U1 = 1 U5 = 147884 U2 = 26 U6 = 2360280 U3 = 510 U7 = 36818536 U4 = 8944 U8 = 565475456 b) Đặt Un+1 = a.Un + b.Un-1 Theo kết quả tính được ở trên, ta có: Giải hệ phương trình trên ta được: a = 26,b = -166 Vậy ta có công thức: Un+1 = 26Un – 166Un-1 c) Lập quy trình bấm phím trên máy CASIO 500MS: Ấn phím: 26 Shift STO A x 26 - 166 x 1 Shift STO B Lặp lại dãy phím x 26 - 166 x Alpha A Shift STO A x 26 - 166 x Alpha B Shift STO B Bài 10 (5 điểm) a) Xem kết quả ở hình bên b) c) Phương trình đường phân giác góc BAC có dạng y = ax + b Góc hợp bởi đường phân giác với trục hoành là , ta có: Hệ số góc của đường phân giác góc BAC là Phương trình đường phân giác là y = 4x + b (3) vì thuộc đường thẳng (3) nên ta có: Vậy đường phân giác góc BAC có phương trình là §Ò chÝnh thøc së GD&§T H¶i d¬ng kú thi gi¶i to¸n trªn m¸y tÝnh casio n¨m häc 2005-2006 líp 9 THCS Thêi gian lµm bµi 150 phót §Ò bµi (thÝ sinh lµm trªn giÊy thi) Bµi 1 (6 ®iÓm)Gi¶i ph¬ng tr×nh: Tr¶ lêi: x = 8,586963434 Bµi 2 (6 ®iÓm)Theo B¸o c¸o cña ChÝnh phñ d©n sè ViÖt Nam tÝnh ®Õn th¸ng 12 n¨m 2005 lµ 83,12 triÖu ngêi, nÕu tØ lÖ t¨ng trung b×nh hµng n¨m lµ 1,33%. Hái d©n sè ViÖt nam vµo th¸ng 12 n¨m 2010 sÏ lµ bao nhiªu? Tr¶ lêi: D©n sè ViÖt Nam ®Õn th¸ng 12-2010: 88796480 ngêi Bµi 3 (11 ®iÓm) Cho tam gi¸c ABC, AB = 7,071cm, AC = 8,246 cm, gãc = 59 0 02'10" 1) TÝnh diÖn tÝch cña tam gi¸c ABC. 2) TÝnh b¸n kÝnh ®êng trßn néi tiÕp tam gi¸c ABC. 3) TÝnh chu vi nhá nhÊt cña tam gi¸c cã ba ®Ønh n»m trªn ba c¹nh cña tam gi¸c ABC. Tr¶ lêi: 1) DiÖn tÝch tam gi¸c ABC: 24,99908516 (4 ®iÓm) 2) B¸n kÝnh ®êng trßn néi tiÕp tam gi¸c ABC: 2,180222023 (3 ®iÓm) 3) Chu vi nhá nhÊt cña tam gi¸c 11,25925473 (4 ®iÓm) Bµi 4 (6 ®iÓm)T×m sè tù nhiªn n tho¶ m·n ®¼ng thøc = 805 ([x] lµ sè nguyªn lín nhÊt kh«ng vît qu¸ x) Tr¶ lêi: n = 118 Bµi 5 (6 ®iÓm)Cho d·y sè ( ) ®îc x¸c ®Þnh nh sau: ; ; víi mäi . TÝnh ? Tr¶ lêi: = 13981014 Bµi 6 (7, 0 ®iÓm)Cho . TÝnh Tr¶ lêi: A = -1,873918408 Bµi 7 (8, 0 ®iÓm) Cho hai biÓu thøc P = ; Q = 1) X¸c ®Þnh a, b, c ®Ó P = Q víi mäi x ¹ 5. 2) TÝnh gi¸ trÞ cña P khi . Tr¶ lêi: 1) a = 3 ; b = 2005 ; c = 76 (4 ®iÓm) 2) P = - 17,99713 ; khi (4 ®iÓm) së GD&§T H¶i d¬ng §Ò chÝnh thøc ***@*** Kú thi chän häc sinh giái gi¶i to¸n trªn m¸y tÝnh casio líp 9 - N¨m häc 2004-2005 Thêi gian lµm bµi 150 phót ============= Bµi 1(2, 0 ®iÓm) Gi¶i hÖ ph¬ng tr×nh: Bµi 2(2, 0 ®iÓm) Khi ta chia 1 cho 49. Ch÷ sè thËp ph©n thø 2005 sau dÊu phÈy lµ ch÷ sè nµo? Bµi 3(2, 0 ®iÓm)Mét ngêi göi 10 triÖu ®ång vµo ng©n hµng trong thêi gian 10 n¨m víi l·i suÊt 5% mét n¨m. Hái r»ng ngêi ®ã nhËn ®îc sè tiÒn nhiÒu h¬n hay Ýt h¬n bao nhiªu nÕu ng©n hµng tr¶ l·i suÊt % mét th¸ng. Bµi 4(3, 0 ®iÓm) D·y sè un ®îc x¸c ®Þnh nh sau: u0 = 1; u1 = 1; un+1= 2un - un-1 + 2, víi n = 1, 2, … LËp mét qui tr×nh bÊm phÝm ®Ó tÝnh un; TÝnh c¸c gi¸ trÞ cña un , khi n = 1, 2, …,20. Bµi 5(2, 0 ®iÓm)T×m gi¸ trÞ chÝnh x¸c cña 10384713. Bµi 6(2, 0 ®iÓm) Cho ®a thøc P(x) = x4 +5x3 - 3x2 + x - 1. TÝnh gi¸ trÞ cña P(1,35627). Bµi 7(2, 0 ®iÓm)Cho h×nh thang c©n ABCD (AB lµ c¹nh ®¸y nhá) vµ hai ®êng chÐo AC, BD vu«ng gãc víi nhau, AB =15,34 cm, AD =BC =20,35cm. TÝnh diÖn tÝch h×nh thang c©n ABCD vµ c¹nh ®¸y CD. Bµi 8(3, 0 ®iÓm) Cho tam gi¸c ABC (A = 900), AB = 3,74 , AC = 4,51; TÝnh ®êng cao AH, vµ tÝnh gãc B theo ®é phót gi©y; §êng ph©n gi¸c kÎ tõ A c¾t BC t¹ D. TÝnh AD vµ BD. Bµi 9(2, 0 ®iÓm) Cho P(x) = x3 + ax2 + bx - 1 X¸c ®Þnh sè h÷u tØ a vµ b ®Ó x = lµ nghiÖm cña P(x); Víi gi¸ trÞ a, b t×m ®îc h·y t×m c¸c nghiÖm cßn l¹i cña P(x). _________________ Híng dÉn vµ ®¸p ¸n ®Ò thi gi¶i to¸n trªn m¸y casio líp 9 Bµi 1: x » 1, 518365287 ; y = 4, 124871738 Bµi 2: 1 chia cho 49 ta ®îc sè thËp ph©n v« h¹n tuÇn hoµn chu kú gåm 42 ch÷ sè 0,(020408163265306122448979591836734693877551) vËy ch÷ sè 2005 øng víi ch÷ sè d khi chia 2005 cho 42; 2005=47.42+31 do ®ã ch÷ sè 2005 øng víi ch÷ sè thø 31 lµ sè 7. Bµi 3: Gäi sè a lµ tiÒn göi tiÕt kiÖm ban ®Çu, r lµ l·i suÊt, sau 1 th¸ng: sÏ lµ a(1+r) … sau n th¸ng sè tiÒn c¶ gèc l·i A = a(1 + r)n Þ sè tiÒn sau 10 n¨m: 10000000(1+)10 = 162889462, 7 ®ång Sè tiÒn nhËn sau 10 n¨m (120 th¸ng) víi l·i suÊt 5/12% mét th¸ng: 10000000(1 + )120 = 164700949, 8 ®ång Þ sè tiÒn göi theo l·i suÊt 5/12% mét th¸ng nhiÒu h¬n: 1811486,1 ®ång Bµi 4fx500MS : (SHIFT)(STO)(A)( ´)2(-)1(SHIFT)(STO)(B) lÆp l¹i (´)2(-)(ALPHA)(A)(+)(SHIFT)(STO)(A)(´)2(-)(ALPHA)(B)(+)2(SHIFT)(STO)(B) 2) u1= 1, u2=3, u3 =7, u4 =13, u5 =21, u6 =31, u7 =43, u8 =57, u9 =73, u10 =91, u11 =111, u12 =133, u13 =157, u14 =183, u15 =211, u16 = 241, u17 =273 , u18 = 307, u19 =343, u20 =381. Bµi 5: 10384713 = (138.103+471)3 tÝnh trªn giÊy céng l¹i: 10384713 =1119909991289361111 Bµi 6: f(1,35627) = 10,69558718 Bµi 7: C¹nh ®¸y lín 24, 35 cm; S = 393, 82cm2 Bµi 8: Sö dông vµ ®êng ph©n gi¸c ;AH » 2, 879 ; B » 50019,55, ;. Chøng minh , (sö dông ph¬ng ph¸p diÖn tÝch);AD » 2,8914 ; BD » 2, 656 Bµi 9: x = 6-Þ b = =6+-(6-)2 - a(6-) (a+13) = b+6a+65 = 0 Þ a = -13 ; b =13 Þ P(x) =x3-13x2+13x-1 (x-1)(x2-12x+1) = 0 Þ x = 1 ; x » 0,08392 vµ x » 11,916 UBND huyÖn cÈm giµng Phßng gd&®t ---***--- ®Ò thi gi¶i to¸n trªn m¸y tÝnh casio n¨m häc 2006-2007 Thêi gian : 150 phót (kh«ng kÓ giao ®Ò) C©u 1(1®) T×m x biÕt: C©u 2(1,5®) a)Cho ph¬ng tr×nh x3+x2-1=0 cã mét nghiÖm thùc lµ x1. TÝnh gi¸ trÞ cña biÓu thøc b)Gi¶i ph¬ng tr×nh : (x-90)(x-35)(x+18)(x+7)=-1008x2(lÊy 6 ch÷ sè thËp ph©n) C©u 3(2®) a)Cho f(x) = 2x6-4x5+7x4-11x3-8x2+5x-2007. Gäi r1 vµ r2 lÇn lît lµ sè d cña phÐp chia f(x) cho x-1,12357 vµ x+0,94578. TÝnh B=0,(2006)r1-3,(2007)r2. b)Cho f(x) = x5+x2+1 cã 5 nghiÖm lµ x1, x2, x3, x4, x5 vµ P(x) = x2-7. TÝnh P(x1)P(x2)P(x3)P(x4)P(x5). C©u 4(1,5®) Ngêi ta b¸n 2 con tr©u, 5 con cõu ®Ó mua 13 con lîn th× cßn thõa 1000 ®ång. §em b¸n 3 con tr©u , 3 con lîn råi mua chÝn con cõu th× võa ®ñ. Cßn nÕu b¸n 6 con cõu, 8 con lîn ®Ó mua 5 con tr©u th× cßn thiÕu 500 ®ång. Hái mçi con cõu, con tr©u, con lîn gi¸ bao nhiªu? C©u 5(1®) Cho gãc nhän a sao cho cos2a =0,5678. TÝnh : TÝnh chÝnh x¸c gi¸ trÞ cña 1234567892 C©u 6(2®) Cho nh×nh vu«ng ABCD cã ®é dµi c¹nh lµ a=. Gäi I lµ trung ®iÓm cña AB. §iÓm H thuéc DI sao cho gãc AHI = 90o. a)TÝnh diÖn tÝch tam gi¸c CHD. Tõ ®ã suy ra diÖn tÝch tø gi¸c BCHI. b)Cho I tïy ý thuéc AB, M tïy ý thuéc BC sao cho gãc MDI = 45o. TÝnh gi¸ trÞ lín nhÊt cña diÖn tÝch tam gi¸c DMI. C©u 7(1®) Cho f(x) =(1+x+x4)25=a0+a1x+a2x2+…+a100x100. TÝnh chÝnh x¸c gi¸ trÞ cña biÓu thøc A=a1+a3+a5+…+a99 -390,2316312 a)2009,498575 b)63;-10; -10,88386249; 57,88376249. 5994,83710745 1200;500;300 0,296162102 15241578749590521 423644304721 Së gd&®t h¶i d¬ng Phßng gd&®t cÈm giµng ---***--- ®Ò thi gi¶i to¸n trªn m¸y tÝnh casio n¨m häc 2005-2006 Thêi gian : 150 phót (kh«ng kÓ giao ®Ò) C©u 1(1®) TÝnh C©u 2(2®) T×m x biÕt a) b) C©u 3(2®) Cho c¸c ®a thøc F(x)= x4+5x3-4x2+3x+a G(x)=-3x4+4x3-3x2+2x+b; H(x)=5x5-x4-6x3+27x2-54x+32 a)T×m a, b ®Ó F(x) vµ G(x) cã nghiÖm chung lµ x=0,25 b)Sö dông c¸c phÝm nhí, lËp quy tr×nh bÊm phÝm t×m sè d trong phÐp chia Q(x) cho 2x+3. C©u 4(2®) Cho u1=a; u2=b; un+1=Mun+Nun-1. LËp quy tr×nh bÊm phÝm tÝnh un vµ tÝnh u13; u14; u15 víi a=2; b=3; M=4; N=5. C©u 5(2®) Cho h×nh thang ABCD(AB//CD) cã . TÝnh AD;BC vµ ®êng cao cña ht C©u 6(1®) Cho h×nh th·ng c©n ABCD cã hsi ®êng chÐo vu«ng gãc, ®¸y nhá AB=13,724; c¹nh bªn 21, 827. TÝnh diÖn tÝch h×nh th·ng( chÝnh x¸c ®Õn 0, 0001) A=402283444622030 B=1660,6871955112 X= X=-20,384 a=-0,58203125 b=-0,3632815 150,96875 Së gd&®t h¶i d¬ng Phßng gd&®t cÈm giµng ®Ò chÝnh thøc ®Ò thi gi¶i to¸n trªn m¸y tÝnh casio n¨m häc 2004-2005 Thêi gian : 150 phót (kh«ng kÓ giao ®Ò) C©u1(3®): TÝnh gi¸ trÞ cña c¸c biÓu thøc sau a) A = b) C = C©u2(3®): a)TÝnh gi¸ trÞ cña x tõ ph¬ng tr×nh sau: b)T×m c¸c sè tù nhiªn a vµ b biÕt r»ng: C©u3(2®): Cho P(x) = x4 + 5x3 - 4x2 + 3x - 50. Gäi r1 lµ phÇn d cña phÐp chia P(x) cho x - 2 vµ r2 lµ phÇn d cña phÐp chia P(x) cho x - 3. ViÕt quy tr×nh tÝnh r1 vµ r2 sau ®ã t×m BCNN(r1;r2) ? C©u4(2®):Cho Un+1 = Un + Un-1 , U1 = U2 = 1. TÝnh U25 C©u5(2®): Cho ®a thøc P(x) = x3 + ax2 + bx + c. BiÕt P(1) = -15; P(2) = -15; P(3) = -9. a) T×m sè d khi chia P(x) cho x – 4 ? b) T×m sè d khi chia P(x) cho 2x + 3 ? C©u6(2,5®):Cho tam gi¸c vu«ng ABC cã AB = ; AC = . Gäi M , N , P thø tù lµ trung ®iÓm cña BC ; AC vµ AB. TÝnh tû sè chu vi cña DMNP vµ chu vi cña DABC ? ( ChÝnh x¸c ®Õn 6 ch÷ sè thËp ph©n) C©u7(4®): a)T×m c¸c sè tù nhiªn a, b, c, d, e biÕt b)Cho . TÝnh x+y? C©u8(2®): Mét ngêi göi tiÕt kiÖm 1000 ®« trong 10 n¨m víi l·i suÊt 5% mét n¨m. Hái ngêi ®ã nhËn ®îc sè tiÒn nhiÒu h¬n hay Ýt h¬n nÕu ng©n hµng tr¶ l·i % mét th¸ng ( Lµm trßn ®Õn hai ch÷ sè thËp ph©n sau dÊu phÈy) A= C= X=-11,33802463 A=7;b=9 R1=139; r2=-556 U25= 75025 9 0,5 A=82436; b=4; C=2;d=1;e=18 45o Theo th¸ng: Theo n¨m: Së gd&®t h¶i d¬ng Phßng gd&®t cÈm giµng ---***--- ®Ò thi gi¶i to¸n trªn m¸y tÝnh casio n¨m häc 2003-2004 Thêi gian : 150 phót (kh«ng kÓ giao ®Ò) C©u 1(3®) TÝnh : C©u 2(2®) a)TÝnh 2,5% cña b)TÝnh 7,5% cña C©u 3(2®) Cho hÖ ph¬ng tr×nh . TÝnh C©u 4(3®) Cho u0=1; u1=3; un+1=un+un-1. TÝnh un víi n = 1;2;3;…; 10. C©u 5(3®
File đính kèm:
- 30 ĐỀ CASIO 9-CÓ Đ.ÁN-CÁC TỈNH-09-10.doc