Inequalities from 2008 Mathematical Contests
Pro 18. (German DEMO 2008) Find the smallest constant C such that
for all real x; y
1 + (x + y)2 ≤ C · (1 + x2) · (1 + y2)
holds.
r
Pro 19. (Irish Mathematical Olympiad 2008) For positive real numbers a, b, c and d such that a2 + b2 + c2 + d2 = 1 prove that
a2b2cd + +ab2c2d + abc2d2 + a2bcd2 + a2bc2d + ab2cd2 ≤ 3=32;
and determine the cases of equality.
r
Pro 20. (Greek national mathematical olympiad 2008, P1) For the
positive integers a1; a2; :::; an prove that
PPn in i=1 =1 aa2 ii kn t ≥ Yi=1 n ai
where k = max fa1; a2; :::; ang and t = min fa1; a2; :::; ang. When does the
equality hold?
Inequalities from 2008 Mathematical Contests Inequality Project Inequalities from 2008 Mathematical Contests Contact If you have any question about this ebook, please contact us. Email: nguyendunghus@gmail.com Acknowledgments We thank a lot to Mathlinks Forum and their members for the reference to problems and many nice solutions from them! Hanoi, 10 October 2008 Inequalities from 2008 Mathematical Contests Inequality Project Contributors Of The Book • Chief editor:Manh Dung Nguyen, High School for Gifted Students, HUS, Vietnam • Editor: • Editor: Inequalities from 2008 Mathematical Contests Inequality Project Chapter 1: Problems Inequalities from 2008 Mathematical Contests Inequality Project Pro 1. (Vietnamese National Olympiad 2008) Let x, y, z be distinct non-negative real numbers. Prove that 1 (x− y)2 + 1 (y − z)2 + 1 (z − x)2 ≥ 4 xy + yz + zx . ∇ Pro 2. (Iranian National Olympiad (3rd Round) 2008). Find the smallest real K such that for each x, y, z ∈ R+: x √ y + y √ z + z √ x ≤ K √ (x+ y)(y + z)(z + x) ∇ Pro 3. (Iranian National Olympiad (3rd Round) 2008). Let x, y, z ∈ R+ and x+ y + z = 3. Prove that: x3 y3 + 8 + y3 z3 + 8 + z3 x3 + 8 ≥ 1 9 + 2 27 (xy + xz + yz) ∇ Pro 4. (Iran TST 2008.) Let a, b, c > 0 and ab+ac+ bc = 1. Prove that: √ a3 + a+ √ b3 + b+ √ c3 + c ≥ 2√a+ b+ c ∇ Pro 5. Macedonian Mathematical Olympiad 2008. Positive numbers a, b, c are such that (a+ b) (b+ c) (c+ a) = 8. Prove the inequality a+ b+ c 3 ≥ 27 √ a3 + b3 + c3 3 ∇ Pro 6. (Mongolian TST 2008) Find the maximum number C such that for any nonnegative x, y, z the inequality x3 + y3 + z3 + C(xy2 + yz2 + zx2) ≥ (C + 1)(x2y + y2z + z2x). holds. ∇ Inequalities from 2008 Mathematical Contests Inequality Project Pro 7. (Federation of Bosnia, 1. Grades 2008.) For arbitrary reals x, y and z prove the following inequality: x2 + y2 + z2 − xy − yz − zx ≥ max{3(x− y) 2 4 , 3(y − z)2 4 , 3(y − z)2 4 }. ∇ Pro 8. (Federation of Bosnia, 1. Grades 2008.) If a, b and c are positive reals such that a2 + b2 + c2 = 1 prove the inequality: a5 + b5 ab(a+ b) + b5 + c5 bc(b+ c) + c5 + a5 ca(a+ b) ≥ 3(ab+ bc+ ca)− 2 ∇ Pro 9. (Federation of Bosnia, 1. Grades 2008.) If a, b and c are positive reals prove inequality: (1 + 4a b+ c )(1 + 4b a+ c )(1 + 4c a+ b ) > 25 ∇ Pro 10. (Croatian Team Selection Test 2008) Let x, y, z be positive numbers. Find the minimum value of: (a) x2 + y2 + z2 xy + yz (b) x2 + y2 + 2z2 xy + yz ∇ Pro 11. (Moldova 2008 IMO-BMO Second TST Problem 2) Let a1, . . . , an be positive reals so that a1 + a2 + . . .+ an ≤ n2 . Find the minimal value of A = √ a21 + 1 a22 + √ a22 + 1 a23 + . . .+ √ a2n + 1 a21 ∇ Inequalities from 2008 Mathematical Contests Inequality Project Pro 12. (RMO 2008, Grade 8, Problem 3) Let a, b ∈ [0, 1]. Prove that 1 1 + a+ b ≤ 1− a+ b 2 + ab 3 . ∇ Pro 13. (Romanian TST 2 2008, Problem 1) Let n ≥ 3 be an odd integer. Determine the maximum value of√ |x1 − x2|+ √ |x2 − x3|+ . . .+ √ |xn−1 − xn|+ √ |xn − x1|, where xi are positive real numbers from the interval [0, 1] ∇ Pro 14. (Romania Junior TST Day 3 Problem 2 2008) Let a, b, c be positive reals with ab+ bc+ ca = 3. Prove that: 1 1 + a2(b+ c) + 1 1 + b2(a+ c) + 1 1 + c2(b+ a) ≤ 1 abc . ∇ Pro 15. (Romanian Junior TST Day 4 Problem 4 2008) Determine the maximum possible real value of the number k, such that (a+ b+ c) ( 1 a+ b + 1 c+ b + 1 a+ c − k ) ≥ k for all real numbers a, b, c ≥ 0 with a+ b+ c = ab+ bc+ ca. ∇ Pro 16. (Serbian National Olympiad 2008) Let a, b, c be positive real numbers such that x+ y + z = 1. Prove inequality: 1 yz + x+ 1 x + 1 xz + y + 1 y + 1 xy + z + 1 z ≤ 27 31 . ∇ Pro 17. (Canadian Mathematical Olympiad 2008) Let a, b, c be positive real numbers for which a+ b+ c = 1. Prove that a− bc a+ bc + b− ca b+ ca + c− ab c+ ab ≤ 3 2 . Inequalities from 2008 Mathematical Contests Inequality Project ∇ Pro 18. (German DEMO 2008) Find the smallest constant C such that for all real x, y 1 + (x+ y)2 ≤ C · (1 + x2) · (1 + y2) holds. ∇ Pro 19. (Irish Mathematical Olympiad 2008) For positive real num- bers a, b, c and d such that a2 + b2 + c2 + d2 = 1 prove that a2b2cd++ab2c2d+ abc2d2 + a2bcd2 + a2bc2d+ ab2cd2 ≤ 3/32, and determine the cases of equality. ∇ Pro 20. (Greek national mathematical olympiad 2008, P1) For the positive integers a1, a2, ..., an prove that(∑n i=1 a 2 i∑n i=1 ai ) kn t ≥ n∏ i=1 ai where k = max {a1, a2, ..., an} and t = min {a1, a2, ..., an}. When does the equality hold? ∇ Pro 21. (Greek national mathematical olympiad 2008, P2) If x, y, z are positive real numbers with x, y, z < 2 and x2+ y2+ z2 = 3 prove that 3 2 < 1 + y2 x+ 2 + 1 + z2 y + 2 + 1 + x2 z + 2 < 3 ∇ Pro 22. (Moldova National Olympiad 2008) Positive real numbers a, b, c satisfy inequality a + b + c ≤ 3 2 . Find the smallest possible value for: S = abc+ 1 abc ∇ Inequalities from 2008 Mathematical Contests Inequality Project Pro 23. (British MO 2008) Find the minimum of x2 + y2 + z2 where x, y, z ∈ R and satisfy x3 + y3 + z3 − 3xyz = 1 ∇ Pro 24. (Zhautykov Olympiad, Kazakhstan 2008, Question 6) Let a, b, c be positive integers for which abc = 1. Prove that∑ 1 b(a+ b) ≥ 3 2 . ∇ Pro 25. (Ukraine National Olympiad 2008, P1) Let x, y and z are non-negative numbers such that x2 + y2 + z2 = 3. Prove that: x√ x2 + y + z + y√ x+ y2 + z + z√ x+ y + z2 ≤ √ 3 ∇ Pro 26. (Ukraine National Olympiad 2008, P2) For positive a, b, c, d prove that (a+ b)(b+ c)(c+ d)(d+ a)(1 + 4 √ abcd)4 ≥ 16abcd(1 + a)(1 + b)(1 + c)(1 + d) ∇ Pro 27. (Polish MO 2008, Pro 5) Show that for all nonnegative real values an inequality occurs: 4( √ a3b3 + √ b3c3 + √ c3a3) ≤ 4c3 + (a+ b)3. ∇ Pro 28. (Chinese TST 2008 P5) For two given positive integers m,n > 1, let aij(i = 1, 2, · · · , n, j = 1, 2, · · · ,m) be nonnegative real numbers, not all zero, find the maximum and the minimum values of f , where f = n ∑n i=1( ∑m j=1 aij) 2 +m ∑m j=1( ∑n i=1 aij) 2 ( ∑n i=1 ∑m j=1 aij) 2 +mn ∑n i=1 ∑m i=j a 2 ij ∇ Pro 29. (Chinese TST 2008 P6) Find the maximal constant M , such that for arbitrary integer n ≥ 3, there exist two sequences of positive real number a1, a2, · · · , an, and b1, b2, · · · , bn, satisfying (1): ∑n k=1 bk = 1, 2bk ≥ bk−1 + bk+1, k = 2, 3, · · · , n− 1; (2):a2k ≤ 1 + ∑k i=1 aibi, k = 1, 2, 3, · · · , n, an ≡M .
File đính kèm:
- BDT_hay_5693_88914190.pdf