Giáo án Tự chọn 11 - Tiết 23, 24: Giới hạn dãy số
Chuyên Đề 6: giới hạn
Bài 23 - 24: giới hạn d•y số (2 tiết)
I. MỤC TIÊU
Qua chủ đề này HS cần:1.Kiến thức
- Biết khái niệm giới hạn của dãy số .
- Biết các định lí về giới hạn dãy số có trong SGK.
- Biết khái niệm cấp số nhân lùi vô hạn và công thức tính tổng của nó.
2. Tư tưởng, tình cảm:-Tích cực tham gia bài học, rèn luyện tư duy lôgíc
3 . Kĩ năng :
- Biết định nghĩa giới hạn dãy số và vận dụng nó vào việc giải một số bài toán đơn giản liên quan đến giới hạn.
- Biết vận dụng các định lí về giới hạn dãy số có trong SGK để tính giới hạn của các dãy số đơn giản
- Biết nhận dạng các cấp số nhân lùi vô hạn và vận dụng công thức tính tổng của nó vào giải một số bài toán đơn giản liên quan đến giới hạn.
Trêng THPT T©n Yªn 2 Tỉ To¸n TiÕt theo ph©n phèi ch¬ng tr×nh :23 - 24. Chuyªn §Ị 6: giíi h¹n Bµi 23 - 24: giíi h¹n d·y sè (2 tiÕt) Ngµy so¹n:05/01/2009. I. MỤC TIÊU Qua chủ đề này HS cần: 1.Kiến thức - Biết khái niệm giới hạn của dãy số . - Biết các định lí về giới hạn dãy số có trong SGK. - Biết khái niệm cấp số nhân lùi vô hạn và công thức tính tổng của nó. 2. Tư tưởng, tình cảm:-Tích cực tham gia bài học, rèn luyện tư duy lôgíc 3 . Kĩ năng : - Biết định nghĩa giới hạn dãy số và vận dụng nó vào việc giải một số bài toán đơn giản liên quan đến giới hạn. - Biết vận dụng các định lí về giới hạn dãy số có trong SGK để tính giới hạn của các dãy số đơn giản - Biết nhận dạng các cấp số nhân lùi vô hạn và vận dụng công thức tính tổng của nó vào giải một số bài toán đơn giản liên quan đến giới hạn. II.Chuẩn bị củaGV và HS: -GV: Giáo án, các bài tập và phiếu học tập, -HS: Ơn tập liến thức cũ, làm bài tập trước khi đến lớp. . III. PHƯƠNG PHÁP DẠY HỌC - Gợi mở vấn đáp - Đan xen hoạt động nhĩm IV. TiÕn tr×nh bµi häc vµ c¸c ho¹t ®éng. -Ổn định lớp, chia lớp thành 4 nhĩm. -Kiểm tra bài cũ: Đan xen với các hoạt động nhĩm. +Bài mới: TL Hoạt động của GV Hoạt động của HS Nội dung bài tập Tiết 1 : 15’ Hoạt động 1 : ôn tập kiến thức cơ bản về giới hạn dãy số 1. áp dụng tính chất về giới hạn của dãy số : Nếu lim un = a và limvn = b thì lim(un+vn) = a + b lim(un-vn) = a - b lim(un.vn) = a . b lim(un/vn) = a / b (nếu b khác 0) Nếu un với mọi n và lim un = a thì a và lim Nếu limun = a và limvn = thì lim= 0 . Nếu lim un = a > 0 , lim vn = 0 và vn > 0 với mọi n thì lim= + Nếu limun = + và lim vn = a > 0 thì limun.vn = + 2.ÁP dụng định lí 2 : 28’ Hoạt động 2 : Luyện tập VDMH 1) Tính lim = lim = 2) Tính :lim() = limn . () = +. (Vì limn = + và lim() = 2 > 0) Bài 1 : Tìm các giới hạn sau : 1) lim 2) lim 3) lim 4) lim 5) lim 6) lim 7) lim 8) lim() 9) lim 10) lim 11) lim (-1) 12) lim () Tiết 2 : Luyện tập Bài 2 : Tìm các giới hạn sau: 1) lim 2) lim 3) lim 4)lim 5) lim n() 6) lim() 7) lim 8) lim () 9) lim() 10) lim 11) lim 12) lim 13) lim 14) lim 15) lim 16)lim 17)lim(với |a|,|b| <1) 18)lim 19) lim 20 ) lim Bài tập về nhà : Bài 3 : Tìm các giới hạn sau: 1) lim 2) lim 3) lim(n+) 4) lim(2n-) 5) lim 6) lim 7) lim( 8) lim(1+ 9)lim( 10)lim 11) lim 12)lim 13) lim 14) lim 15)lim
File đính kèm:
- TC T23 - 24.doc