Giáo án Hình học 11 nâng cao: Phép đối xứng trục
PHÉP ĐỐI XỨNG TRỤC
(Chương trình nâng cao)
I. MỤC TIÊU:
Về kiến thức:
Học sinh nắm vững:
Định nghĩa phép đối xứng trục. Kí hiệu
Phép đối xứng trục là phép dời hình
Tính chất của phép đối xứng trục
Biểu thức toạ độ của phép đối xứng trục qua trục Ox, Oy
Hình có trục đối xứng và trục đối xứng của một hình
Về kĩ năng:
Dựng ảnh của một hình qua phép đối xứng trục
Nhận biết những hình đơn giản có trục đối xứng và xác định trục đối xứng cảu hình đó
Viết phương trình ảnh của 1 hình qua phép đối xứng trục Ox, Oy
GIÁO ÁN (NGUYỄN PHÚ NINH –Hoàng Diệu _Điện Bàn) PHÉP ĐỐI XỨNG TRỤC (Chương trình nâng cao) MỤC TIÊU: Về kiến thức: Học sinh nắm vững: Định nghĩa phép đối xứng trục. Kí hiệu Phép đối xứng trục là phép dời hình Tính chất của phép đối xứng trục Biểu thức toạ độ của phép đối xứng trục qua trục Ox, Oy Hình có trục đối xứng và trục đối xứng của một hình Về kĩ năng: Dựng ảnh của một hình qua phép đối xứng trục Nhận biết những hình đơn giản có trục đối xứng và xác định trục đối xứng cảu hình đó Viết phương trình ảnh của 1 hình qua phép đối xứng trục Ox, Oy Tư duy: Phát triển tư duy, trí tưởng tượng của học sinh để nhận biết hình có trục đối xứng và trục đối xứng của hình đó Thái độ: Cẩn thận, chính xác trong việc dựng ảnh của 1 hình Tích cực hoạt động trả lời các câu hỏi trong sgk CHUẨN BỊ CỦA GIÁO VIÊN VÀ HỌC SINH Giáo viên: Bảng phụ và một số hình có trục đối xứng Học sinh: Một số hình có trục đối xứng . PHƯƠNG PHÁP: Gợi mở, vấn đáp thông qua các hoạt động phát huy tính tích cực của HS TIẾN TRÌNH BÀI HỌC: : Hoạt động 1: TIẾP CẬN ĐỊNH NGHĨA PHÉP ĐỐI XỨNG TRỤC Tgian Hoạt động HS Hoạt động GV y Ghi bảng 8' - Lên bảng trả lời các câu hỏi kiểm tra của GV - Gọi HS lên bảng trả lời các câu hỏi: H1: Nêu định nghĩa, tính chất phép dời hình H2: Tìm điểm M'(x; -y) H3: Tìm quan hệ giữa trục Ox và MM' - GV nhận xét, đánh giá .M(x;y) x Hoạt động 2: ĐỊNH NGHĨA PHÉP ĐỐI XỨNG TRỤC Tgian Hoạt động HS Hoạt động GV Ghi bảng 10' - Trả lời các câu hỏi? a: trung trực MM' M' = Đa(M) M' º M Û M Î a Biến M' thành M Biến H ' thành H H4: Nêu điều kiện để điểm M' đối xứng với điểm M qua đường thẳng a: H5: Qua Đa những điểm nào biến thành chính nó? Nếu M' = Đa(M) thì Đa(M') = ? Nếu H' '= Đa(H ) thì Đa(H ') = ? 1. Định nghĩa phép đối xứng trục: Định nghĩa 1: (sgk) Kí hiệu: Đa - Đường thẳng a: trục đối xứng Hoạt động 3: TÍNH CHẤT PHÉP ĐỐI XỨNG TRỤC Tgian Hoạt động HS Hoạt động GV Ghi bảng 15' - Trả lời các câu hỏi của GV A'(xA; -yA) B'(xB; -yB) AB = A'B' = - Dùng bảng phụ đã vẽ hình 7 (sgk) H1: Cho A(xA; yA) ; B(xB; yB) A' = ĐOx(A); B' = ĐOx(B) Tìm toạ độ điểm A', B' Tính và so sánh AB; A'B' H2: Qua ĐOx biến M(x;y) thành M'(x';y'). Tìm quan hệ giữa x và x'; y và y' H3: Thay ĐOx bởi ĐOy, tìm quan hệ giữa x và x'; y và y' 2. Định lý: Phép đối xứng trục là một phép dời hình Biểu thức toạ độ: ĐOx: ĐOy: Hoạt động 4: TRỤC ĐỐI XỨNG CỦA MỘT HÌNH Tgian Hoạt động HS Hoạt động GV Ghi bảng 10' - Trả lời các câu hỏi của GV Tìm đươc đường thẳng a biến hình H thành hình H ' Kg có trục đối xứng hoặc có 1 hay nhiều trục đối xứng - Dùng bảng phụ có vẽ 2 nhóm hình: Hình có tính "cân xứng" và hình không có tính "cân xứng" H1: Thế nào là hình có tính "cân xứng" H2: Với 1 hình cho trước có bao nhiêu trục đối xứng? - Gọi một vài HS trả lời câu hỏi 4 trong sgk 3. Trục đối xứng của một hình: Định nghĩa 2: (sgk) Hoạt động 5: ỨNG DỤNG CỦA PHÉP ĐỐI XỨNG TRỤC Tgian Hoạt động HS Hoạt động GV Ghi bảng 12' .M A. d .B M = d Ç AB - HS trình bày bài cm theo yêu cầu của GV H1: Tìm điểm M khi A, B nằm khác phía đối với đường thẳng d? H2 Khi A, B nằm cùng phía đối với đường thẳng d, gọi JS trình bày các yêu cầu sau: + Tìm A' = Đd(A) + Tìm M = d Ç A'B + So sánh AM và A'M + C/minh AM + BM nhỏ nhất 4. Áp dụng: Bài toán: Tìm M Î d sao cho AM + BM nhỏ nhất M B A A' d V.CỦNG CỐ-HƯỚNG DẪN HỌC Ở NHÀ, 1/ Tìm các đa giác có 1, 2, 3, 4, 5 trục đối xứng và xác định trục đối xứng 2/ Tìm hình có n trục đối xứng? Xác định các trục đối xứng đó? 3/ Tìm hình có vô số trục đối xứng? 4/ Trong mặt phẳng Oxy cho (P) có phương trình: y2 = -6x Viết phương trình ảnh của (P) qua ĐOx; ĐOy : 5/ Bài tập về nhà: 7, 8, 9, 10, 11 sgk BÀI TẬP PHÉP ĐỐI XỨNG TRỤC (Chương trình nâng cao) Mục tiêu: Về kiến thức: Củng cố kiến thức về định nghĩa phép đối xứng trục. Phép đối xứng trục là phép dời hình nên có các tính chất của phép dời hình Về kĩ năng: Rèn luyện kĩ năng dựng ảnh qua phép đối xứng trục. Biết các hình đơn giản là có (hay không có) trục đối xứng và dựng được trục đối xứng Tư duy: Bồi dưỡng tư duy linh hoạt qua việc tìm lời giải bài toán dựa vào tính chất phép đối xứng trục Thái độ: Cẩn thận, chính xác khi dựng ảnh của điểm, hình qua trục Vẽ chính xác các hình khi có trục đối xứng Chuẩn bị của GV và HS: Giáo viên: Chọn và ra bài tập, dự đoán tình huống của học sinh . Học sinh: Chuẩn bị bài tập trước ở nhà . Phương pháp: Đàm thoaị kết hợp gợi mở của giáo viên Tiến trình bài học: Kiểm tra bài cũ: HOẠT ĐỘNG 1 Câu hỏi 1: Hãy nêu lại các tính chất của phép đối xứng trục Câu hỏi 2: Trong các hình sau, hình nào có trục đối xứng? Hãy chỉ ra (nếu có) MÂM ; IS HOẠT ĐỘNG 2 Bài mới: Tgian Hoạt động HS Hoạt động GV Ghi bảng 8' - theo dõi câu trả lời của bạn để chỉnh sửa, góp ý - Độc lập suy nghĩ để trả lời theo dẫn dắt của thầy. - Biết được: + d là phân giác của các góc tạo bởi d1; d2 + (d, d1) = 450 B7: Đàm thoại - Chỉ định HS trả lời các câu a, b, c - Câu d: gợi ý H: Cho hình gồm hai đường thẳng d1, d2 cẳt nhau. Hãy chỉ ra trục đối xứng của hình đã cho. Khi nào d1 ^ d2 ? Lúc đó hãy tính góc giữa d và d1 Đa: d d' Khi đó d ^ d' khi (d, d1) = 450 10' HOẠT ĐỘNG 3 - Theo dõi câu trả lời của bạn để góp ý, chỉnh sửa - Biết được - Nêu được biểu thức toạ độ của ĐOy - Viết được M'(-x;y) - Thay toạ độ M' vào phương trình của (C) và do đó M' Î (C') nên hiểu được phương trình của (C') đối xứng với (C) qua Oy x2 + y2 + 4x + 5y + 1 = 0 B8: - Gọi một học sinh nhắc lại biểu thức toạ độ của phép ĐOx H1: Vẽ hệ trục Oxy và cho 2 điểm M, M' đối xứng qua Oy, với M(x;y) ; M'(x';y'). Tìm hệ thức giữa x, x' và y, y' + Hãy nêu biểu thức toạ độ của ĐOy H2: Cho M(x;y) Î (C1). M' là điểm đối xứng với M qua Oy. Hãy viết toạ độ của M'. Gọi (C1') đối xứng với (C1) qua Oy M Î (C1) Þ M'(-x;y) Î (C1') Hãy thay toạ độ M' vào phương trình (C1) và kết luận phương trình (C1') - Từ biểu thức toạ độ của ĐOy và do f(-x) = f(x) suy ra câu b của bài 11 Biểu thức toạ độ của phép đối xứng qua trục Oy: Do M(x;y) bất kỳ thuộc (C1), điểm đối xứng với nó qua Oy là M'(-x;y) lại có toạ độ thoả phương trình: x2 + y2 + 4x + 5y + 1 = 0 nên đó cũng là phương trình của đường tròn (C1') ảnh của (C1) qua ĐOy 10' HOẠT ĐỘNG 4 - Có: BA = BA' CA = CA" - Chi vi của DABC là: 2p = AB + BC + CA = BA' + BC + CA" ³ A'A" (1) - 2p nhỏ nhất bằng A'A" đạt được khi dấu đẳng thức (1) xảy ra. Khi đó A", C, B, A' thẳng hàng. - Dựng B, C Lấy giao điểm của đường thẳng A'A" với Ox, Oy, ta có các điểm B, C. A C A" y x A' O B B9: Vẽ hình Gọi A', A" thứ tự là các điểm đối xứng của A qua Õ; Oy H: + N/xét gì về các đoạn BA với BA'; CA với CA" + Hãy lập chu vi của DABC và từ kết quả trên (BA = BA'); CA = CA'), hãy định vị trí B và C để độ dài đường gấp khúc A"CBA' ngắn nhất. - Chú ý: độ dài A'A" không đổi khi A đã cố định cho trước - Hãy nêu cách dựng điểm , C (chú ý: chỉ mới có góc nhọn xOy và điểm A) (Cho vẽ hình) - Gọi A', A" thứ tự là các điểm đối xứng với A qua Ox và Oy. Ta có: BA = BA' CA = CA" - Chi vi của DABC là: 2p = AB + BC + CA = BA' + BC + CA" ³ A'A" (1) - 2p nhỏ nhất bằng A'A" đạt được khi dấu đẳng thức (1) xảy ra. Khi đó A", C, B, A' thẳng hàng. - Dựng B, C Lấy giao điểm của đường thẳng A'A" với Ox, Oy, ta có các điểm B, C. 5' HOẠT ĐỘNG 5 - Theo hướng dẫn của thầy để về nhà tự giải - Qua mgợi ý của thầy biết được H chạy trên đường tròn ảnh của (O;R) qua ĐBC B10: Hướng dẫn cụ thể - Chứng minh H đối xứng với H' qua đường thẳng BC (có thể dùng góc nội tiếp để chứng minh DCHH' cân tại C suy ra kết quả). - Do ĐBC biến đường tròn thành đường tròn, mặt khác H là ảnh của H' qua ĐBC nên khi H' chạy trên (O;R) thì H chạy trên đường tròn ảnh của (O;R) qua ĐBC 2' - Khắc sâu tính bất biến của phép đối xứng trục - Hãy xét bài 9 khi xOy là góc tù? (Về nhà)
File đính kèm:
- GIAO AN Phep doi Xung Truc.doc