Giáo án Hình học 10 tuần 17

I. Mục tiêu.

1. Về kiến thức

-Biết khái niệm và các tính chất của bất đẳng thức.

-Hiểu bất đẳng thức cô-si.

2. Về kỹ năng.

 -Vận dụng được tính chất của bất đẳng thức hoặc dùng phép biến đổi tương đương để chứng minh một số bất đẳng thức đơn giản.

-Biết vận dụng bất đẳng thức cô-si vào việc chứng minh một số bất đẳng thức hoặc tìm giá trị lớn nhất , giá trị nhỏ nhất của một biểu thức đơn giản.

-Chứng minh được một số bất đẳng thức đơn giản có chứa dấu giá trị tuyệt đối.

-Biết biểu diễn các điểm trên trục số thỏa mãn các bất đẳng thức .

3. Về tư duy.

-Biết đưa các dạng toán về dạng quen thuộc, phát triển tư duy lôgic.

4. Về thái độ.

-Rèn luyện tính cẩn thận ,chính xác, khoa học, thẩm mĩ.

- Tích cực, chủ động trong qu trình trả lời cu hỏi

 

doc12 trang | Chia sẻ: oanh_nt | Lượt xem: 1272 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Giáo án Hình học 10 tuần 17, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
ối.
-Biết biểu diễn các điểm trên trục số thỏa mãn các bất đẳng thức .
3. Về tư duy.
-Biết đưa các dạng toán về dạng quen thuộc, phát triển tư duy lôgic.
4. Về thái độ.
-Rèn luyện tính cẩn thận ,chính xác, khoa học, thẩm mĩ.
- Tích cực, chủ động trong qu trình trả lời cu hỏi
II. Chuẩn bị của gio vin v học sinh.
- Giáo viên: sách giáo khoa, SBT, và các phương tiện dạy học khác.
- Học sinh: SGK, SBT và các đồ dùng học tập khác.
III. Phương pháp:
Phương pháp gợi mở, vấn đáp và các phương pháp khác.
 IV. Tiến trình bài học và các hoạt động
1. Ổn định tổ chức lớp
2. Kiểm tra bài cũ
3. Bài mới 
Hoạt động 1. Khái niệm bất đẳng thức. (10phút).
Hoạt động của giáo viên 
Hoạt động của học sinh
	Nội dung
- Hs ôn tập bằng cách hoàn thành 2 bài tập sau:
- Chọn chấm điểm 5 vở nhanh nhất và đúng nhất.
1. Trong các mệnh đề sau mệnh đề nào đúng:
a/3,25-4 
 c/-3
2. Chọn dấu thích hợp (=;) điền vào ô vuông ta được một mệnh đề đúng
 a/23 b/
 c/3+2(
 d/ a2+10 ,với a là số đã cho
*. 1 hs trả lời câu hỏi sau:
Thế nào là một bất đẳng thức?
- Nhắc lại khái niệm bất đẳng thức.
HS thực hiện yêu cầu của GV.
a/3,25<4 Đ 
 b/-5>-4 S
 c/-3Đ
d.Đ
e.Đ
a/23 b/
 c/3+2(
 d/ a2+10 ,với a là số đã cho
*. Các mệnh đề dạng “ab” được gọi là bất đẳng thức.
I. Ôn tập bất đẳng thức.
1. Khái niệm bất đẳng thức.
Các mệnh đề dạng “ab” được gọi là bất đẳng thức.
Hoạt động 2. Bất đẳng thức hệ quả và bât đẳng thức tương đương. (10phút)
Hoạt động của giáo viên
 Hoạt động của học sinh
 Nội dung
Hs trả lời các câu hỏi sau:
1. Thế nào là 1 bất đẳng thức hệ quả, bất đẳng thức tương đương?
2. Cho ví dụ về từng loại?
Vd:x>y
 x+2>y+2
 x>2 
 x2>4
Hs giải thích và hiểu rõ bất đẳng thức hệ quả và bất đẳng thức tương đương.
2. Bất đẳng thức hệ quả và bât đẳng thức tương đương
- Nếu mệnh đề “a<bc<d” đúng thì ta nói bất đẳng thức c<d là bất đẳng thức hệ quả của bất đẳng thức a<b và cũng viết là a<bc<d.
- Nếu bất đẳng thức a<b là hệ quả của bất đẳng thức c<d và ngược lại thì ta nói hai bât đẳng thức tương đương với nhau và cũng viết a<bc<d.
Hoạt động 3. Tính chất của bất đẳng thức. (20phút)
 Hoạt động của giáo viên
 Hoạt động của học sinh
 Nội dung
Chứng minh rằng :
a a-b<0
Mđộ 1:hs tự giải quyết
Mđộ 2:ta ch/m 2 mđ sau: aa-ba<b 
Mđộ 3:ta áp dụng tính chất cộng 2 vế bất đẳng thức với 1 số để c/m 2 mđ trên
Gv yêu cầu HS:
- Nhắc lại 1 số tính chất đã học về bất đẳng thức
- Cho 1 vài ví dụ áp dụng 1 trong các tính chất trên
Vd:
x>y => -2x<-2y (Ad tính chất nhân 2 vế của bất đẳng thức với 1 số âm)
3. Tính chất của bất đẳng thức.
 SGK/Tr75.
Lưu ý: 
* Cm a<b ta có thể chứng minh a-b<0
* x2 >= 0, với mọi x
= 0 khivàchỉ khi x=0
* a2+b2+c2>=0, vói mọi a, b,c 
= 0 kvck a=b=c=0
Hoạt động 4. Bất đẳng thức cô – si. (15phút)
Hoạt động của giáo viên
 Hoạt động của học sinh
Nội dung
Phát biểu định lý cô-si.
Hs trả lời câu hỏi :
1. Hãy chứng minh bất đẳng thức cô-si.
Mđộ 1:hs tự giải quyết
Mđ2:biến đổi mệnh đề đã cho tương đương với một mệnh đề đúng
Mđ3 : (1 ) a+b-2,ta cần chứng minh mệnh đề này đúng
Hs trả lời :2. Khi nào đẳng thức xảy ra?
Mở rộng lên cho 3, 4, n số không âm
- BĐT cô – si cho 3 số:
Cho 3 số không âm ta có: 
Dấu “=” xảy ra khi .
BĐT Cô – si cho n số:
Cho n số không âm ta có: 
Dấu “=” xảy ra khi .Hd làm ví dụ
- Nghe hiểu và thực hiện tùy khả năng hs mà thực hiện mđ1 ,mđ2 ,mđ3
 - Ghi nhận kiến thức 
- Trình bày cách chứng minh
= £ 0
- Chỉnh sửa hoàn thiện
Học sinh làm ví dụ
Áp dụng BĐT Cô si cho hai số a;b
Áp dụng BĐT cô si cho 
Nhân vế với vế của (1); (2) ta có
Dấu “ =” xảy ra 
II. Bất đẳng thức cô-si.
1.Định lý.
Dấu “=” xảy ra a=b
Ví dụ: Cho a, b > 0. Cm: 
4. Củng cố. (5phút)
 HS cần nhớ lại kiến thức cơ bản về các BĐT, bước đầu vdụng vào BT đơn giản.
HS nhắc lại bất đẳng thức cô – si
5. Dặn dò(phút)
	- BTVN: 1 (SGK/Tr79).
IV. Rút kinh nghiệm sau tiết dạy
………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………..
Ngày tháng năm 201
Nhận xét của tổ trưởng
Ngày soạn: 	 PPCT: Tiết 50.
Ngày dạy: 	 Tuần: 17
Dạy lớp: 
Tiết 50 :§1: Bất đẳng thức(tiếp)
I. Mục tiêu.
1. Về kiến thức
-Biết khái niệm và các tính chất của bất đẳng thức.
-Hiểu bất đẳng thức cô-si.
-Biết được một số bất đẳng thức chứa giá trị tuyệt đối.
2. Về kỹ năng.
 -Vận dụng được tính chất của bất đẳng thức hoặc dùng phép biến đổi tương đương để chứng minh một số bất đẳng thức đơn giản.
-Biết vận dụng bất đẳng thức cô-si vào việc chứng minh một số bất đẳng thức hoặc tìm giá trị lớn nhất , giá trị nhỏ nhất của một biểu thức đơn giản.
-Chứng minh được một số bất đẳng thức đơn giản có chứa dấu giá trị tuyệt đối.
-Biết biểu diễn các điểm trên trục số thỏa mãn các bất đẳng thức .
3. Về tư duy.
-Biết đưa các dạng toán về dạng quen thuộc, phát triển tư duy lôgic.
4. Về thái độ.
-Rèn luyện tính cẩn thận ,chính xác, khoa học, thẩm mĩ.
- Tích cực, chủ động trong qu trình trả lời cu hỏi
II. Chuẩn bị của gio vin v học sinh.
- Giáo viên: sách giáo khoa, SBT, và các phương tiện dạy học khác.
- Học sinh: SGK, SBT và các đồ dùng học tập khác.
III. Phương pháp:
Phương pháp gợi mở, vấn đáp và các phương pháp khác.
 IV. Tiến trình bài học và các hoạt động
1. Ổn định tổ chức(1 phút)
2. Kiểm tra bài cũ( phút)
Nêu định lý về bất đẳng thức Cô si?
Chứng minh BĐT:
3. Bài mới 
Hoạt động 1. Các hệ quả. (20phút)
Hoạt động của giáo viên
Hoạt động của học sinh
Nội dung
H1. Vận dụng BĐT Côsi, chứng minh BĐT a + ³ 2 
· GV cho 1 giá trị S, yêu cầu HS xét các cặp số x, y sao cho x + y = S. Nhận xét các tích xy ?
· Hướng dẫn HS chứng minh.
· Hướng dẫn HS nhận xét ý nghĩa hình học.
Đ1. 
· Tích xy lớn nhất khi x = y.
· x + y ® chu vi hcn
 x.y ® diện tích hcn
 x = y ® hình vuông
2. Các hệ quả
HQ1: 	a + ³ 2, "a > 0
HQ2: Nếu x, y cùng dương và có tổng x + y không đổi thì tích x.y lớn nhất khi và chỉ khi x = y.
Ý nghĩa hình học: Trong tất cả các hình chữ nhật có cùng chu vi thì hình vuông có diện tích lớn nhất.
HQ3: Nếu x, y cùng dương và có tích x.y không đổi thì tổng x + y nhỏ nhất khi và chỉ khi x = y.
Ý nghĩa hình học: Trong tất cả các hình chữ nhật có cùng diện tích thì hình vuông có chu vi nhỏ nhất
Hoạt động 2. BĐT chứa dấu giá trị tuyệt đối. (10 phút).
H1. Nhắc lại định nghĩa về GTTĐ ?
H2. Nhắc lại các tính chất về GTTĐ đã biết ?
Điều kiện
Nội dung
/x/ ³ 0, 	/x/ ³ x,	/x/ ³ –x
a> 0
/x/ £ a Û –a £ x £ a
/x/ ³ a Û x £ –a hoặc x ³ a
/a/ – /b/ £ /a + b/ £ /a/ + /b/
VD: Cho x Î [–2; 0]. Chứng minh: 	/x + 1/ £ 1
H3. Nhắc lại định nghĩa khoảng, đoạn ?
x Î [–2; 0] Û –2 £ x £ 0
Û –2 + 1 £ x + 1 £ 0 + 1
Û –1 £ x + 1 £ 1
Û /x + 1/ £ 1
4. Củng cố( phút)
+ BĐT Côsi và các ứng dụng
+ Các tính chất về BĐT chứa GTTĐ.
5. Dặn dò( phút)
Học kiến thức về bất đẳng thức cô si, bất đẳng thức chứa dấu giá trị tuyệt đối 
Làm bài tập 3,4,5/79
IV. Rút kinh nghiệm sau tiết dạy
…………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………Ngày tháng năm 201
Nhận xét của tổ trưởng
Ngày soạn: 	 PPCT: Tiết 51.
Ngày dạy: 	 Tuần: 17
Dạy lớp:
Tiết 51: Luyện tập bất đẳng thức
I. Mục tiêu.
1. Về kiến thức:Ôn tập, củng cố, khắc sâu hơn cho học sinh kiến thức về
- Khái niệm và các tính chất của bất đẳng thức.
- Bất đẳng thức cô-si.
- Một số bất đẳng thức chứa giá trị tuyệt đối.
2. Về kỹ năng:Rèn luyện cho học sinh một số kỹ năng
 -Vận dụng được tính chất của bất đẳng thức hoặc dùng phép biến đổi tương đương để chứng minh một số bất đẳng thức đơn giản.
-Biết vận dụng bất đẳng thức cô-si vào việc chứng minh một số bất đẳng thức hoặc tìm giá trị lớn nhất , giá trị nhỏ nhất của một biểu thức đơn giản.
-Chứng minh được một số bất đẳng thức đơn giản có chứa dấu giá trị tuyệt đối.
-Biết biểu diễn các điểm trên trục số thỏa mãn các bất đẳng thức .
3. Về tư duy.
-Biết đưa các dạng toán về dạng quen thuộc, phát triển tư duy lôgic.
4. Về thái độ.
-Rèn luyện tính cẩn thận ,chính xác, khoa học, thẩm mĩ.
- Tích cực, chủ động trong qu trình trả lời cu hỏi
II. Chuẩn bị của giáo viên và học sinh
- Giáo viên: sách giáo khoa, SBT, và các phương tiện dạy học khác.
- Học sinh: SGK, SBT và các đồ dùng học tập khác.
III. Phương pháp:
Phương pháp gợi mở, vấn đáp và các phương pháp khác.
 IV. Tiến trình bài học và các hoạt động
1. Ổn định tổ chức(1 phút)
2. Kiểm tra bài cũ( phút)
3. Bài mới 
Hoạt động 1: Chữa bài tập 1( phút)
Hoạt động của giáo viên
Hoạt động của học sinh
 Nội dung
Chia 4 nhóm học tập và làm việc theo nhóm
Mđ1:Cả 4 nhóm cho kết quả và giải thích ở cách chọn của mình
Mđ2:trả lời câu hỏi sau:
 Câu a sai vì sao?
 Với x>5 ,hãy so sánh và 
1/ d.
2/-1
Giải thích:vì x>5
0< <1 ;1<+1
-11
Bài tập 2
Hoạt động 2: Chữa bài tập 3( phút)
HoạHoạt động của giáo viên
 Hoạt động của học sinh
	 Nội dung
3a/ 
Mđ1:hs tự giải quyết 
Mđ2 :hs trả lời câu hỏi gợi ý sau:
 Khi nào thì 3 số a ,b, c là độ dài 3 cạnh của 1 tam giác?
Mđ3 :( b-c)2(b-c-a)(b-c+a) < 0
Không mất tính tổng quát ta cũng có
(a-b)2 <c2 ;(c-a)2 <b2 
3b/suy ra từ kết quả câu a
Cộng vế với vế 3 kết quả trên ta suy ra đpcm
Nghe hiểu nhiệm vụ và thực hiện tùy từng mức độ
Tìm cách giải ,trình bày cách giải 
Chỉnh sữa hoàn thiện
( b-c)2<a2
 (b-c-a)(b-c+a) < 0
 a ,b,c làđộ dài 3 cạnh tam giác nên :
a+c>b => b-c-a < 0
a+b>c => b-c+a>0
=>(b-c-a)(b-c+a) < 0 (đúng)
Bài tập 3
Hoạt động 3: Chữa bài tập 4,5/79( phút)
Hoạt động của giáo viên
 Hoạt động của học sinh
Nội dung
4/hd:ta dùng phép biến đổi tương đương
Xét hiệu:x3+y3-(x2y+xy2)=
Hs biến đổi để đưa được về kết quả 
 =(x+y)(x2+y2-xy) –xy(x+y)
 =(x+y)(x2-2xy+y2)
 =(x+y)(x-y)2
Nhận xét kết quả sau khi đã biến đổi
5/hướng dẫn hs tìm cách giải bài toán,không trình bày bài giải
Đặt =t
 Xét 2 trường hợp :
 *<1
 * x

File đính kèm:

  • doctuan17 dai 10.doc
Giáo án liên quan