Giáo án Giải tích 12 nâng cao tiết 63, 64: Tích phân

BÀI 3 TÍCH PHÂN

 Tiết 63-64

 I. Mục tiêu:

 a) Về kiến thức : khái niệm tích phân, diện tích hình thang cong, tính chất của tích phân,

 -Học sinh hiểu được bài toán tính diện tích hình thang cong và bài toán quãng đường đi

 được của một vật.

 - Phát biểu được định nghĩa tích phân, định lí về diện tích hình thang cong.

 - Viết được các biểu thức biểu diễncác tính chất của tích phân

 b) Về kỹ năng:Học sinh rèn luyện được kĩ năng tính một số tích phân đơn giản. Vận dụng

 vào thực tiễn để tính diện tích hình thang cong , giải các bài toán tìm quãng đường đi

 được của một vật

 II. Phương pháp :

 - Thuyết trình, kết hợp thảo luận nhóm và hỏi đáp.

 - Phương tiện dạy học: SGK.

 

doc9 trang | Chia sẻ: tuananh27 | Lượt xem: 539 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Giáo án Giải tích 12 nâng cao tiết 63, 64: Tích phân, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
qua bài toán diện tích hình thang cong
1
 Tg
Hoạt động của giáo viên
Hoạt động của Hs
Nội dung ghi bảng
10’
2o’
I/Khái niệm hình thang cong
 y
 7 B 
 H
f(t)=t+1
 3 A
 1 D G C
 -1 x 
 O 2 t 6 
 ( Hình 1)
-Dựng hình thang ABCD khi biết các đường thẳng: AB: f(x)=x+1,AD: x=2, CB: x=6 và y = 0 (trục hoành)
-Tính diện tích S hình thang ABCD
-Lấy t . Khi đó diện tích hình thang AHGDbằng bao nhiêu?
-S’(t) = ?.Khi đó S(t) và f(t) có liên hệ như thế nào ?
 -Tính S(6) , S(2) ? và S?
Từ lập luận trên dẫn đến k/n hình thang cong và công thức tính d/t nó. 
 y
 B
 y= f (x)
 A
 x 
 O a b 
-Giáo viên đưa ra bài toán: Tính diện tích của hình thang cong aABb
Giới hạn bởi đồ thị của hàm số liên tục y = f(x) , f(x) 0, trục Ox và các đương thẳng x = a , x = b (a<b) 
-Cho học sinh đọc bài toán 1 sgk 
-Kí hiệu S(x) là diện tích hình thang cong giới hạn bởi đồ thị (C) của hàm số y = f(x), trục Ox và các đường thẳng đi qua a, x và song song Oy. Hãy chứng minh S(x) là một nguyên hàm của f(x) trên [a; b]
S = 
S(t) = 
 t
S’(t) = t+1= f(t) S(t) là một nguyên hàm của f(t) = t+1
S(6) = 20,S(2) = 0
 và S= S(6)-S(2)
-Bài toán tích diện tích hình phẳng giới hạn bởi một đường cong có thể đưa về bài toán tính diện tích của một số hình thang cong
1/ Hai bài toán dẫn đến khái niệm tích phân: 
a) Diện tích hình thang cong
-Bài toán 1: (sgk)
 y
 y=f(x)
 S(x)
 x 
 o a x b
 Hình 3
KH: S(x) (a )
2
3’
-Giả sử x0 là điểm tùy ý cố định thuộc (a ; b) 
*Xét điểm x(a ; b ]
-Diện tích hình thang cong MNEQ? 
-Dựa vào hình 4 so sánh diện tích 
SMNPQ , SMNEQ và SMNEF
 *f(x) liên tục trên [ a; b ] ? 
 - Suy ra ?
*Xét điểm x[a ; b )
Tương tự ?
Từ (2) và (3) suy ra gì?
S(x) là 1 nguyên hàm của f(x) trên
 [ a; b ] ta biểu diễn S(x)?
* SMNEQ = S(x) – S(x0)
 S =?
-Giáo viên củng cố kiến thức BT1
+ Giả sử y = f(x) la một hàm số liên tục và f(x) 0 trên [ a; b ]. Khi đó diện tích của hình thang cong giới hạn bởi đồ thị (C) của hàm sốy = f(x), trục Ox và 2 đường thẳng 
x = a, x = b là S = F(b) – F(a) trong đó F(x) là một nguyên hàm bất kì của hàm số f(x) trên [ a; b ]
SMNEQ = S(x) – S(x0)
SMNPQ < SMNEQ < SMNEF
 f(x0)
 f(x0) (2)
 f(x0) (3)
 f(x0)
S(x) = F(x) +C (C: là hằng số)
S = S(b) – S(a)
 y y=f(x) 
 F E
 f(x)
 f(x) Q P
 xo x
 x
 0 a M N b 
 Hình 4
*Xét điểm x(a ; b ] 
SMNEQ là S(x) – S(x0)
Ta có:SMNPQ < SMNEQ < SMNEF
f(x0)(x-x0)<S(x)-S(x0)<f(x)(x-x0)
 f(x0)<<f(x) (1)
Vì f(x0)
(1) f(x0)(2)
*Xét điểm x[a ; b )
Tương tự:f(x0)(3)
 Từ (2) và (3)ta có:
 f(x0)
Hay S’ (x) = f(x0)
 Suy ra S’ (x) = f(x) (vì x(a ; b )
nên suy ra S’ (a) = f(a),S’(b) = f(b)
Vậy S(x) là 1 nguyên hàm của f(x)
trên [ a; b ]
S(x)= F(x) +C (C: là hằng số)
S = S(b) – S(a)
 = (F(b) +C) – (F(a) + C)
 = F(b) – F(a)
3
7’
-Giáo viên định hướng học sinh giải quyết nhiệm vụ ở phiếu học tập số 1
-Tìm họ nguyên hàm của f(x)?
-Chọn một nguyên hàm F(x) của f(x) trong họ các nguyên hàm đã tìm được ?
-Tính F(1) và F(2)
Diện tích cần tìm ?
-Học sinh tiến hành giải dưới sự định hướng của giáo viên: 
I = = C ( C là hằng số)
Chọn F(x) = 
F(1) = , F(2) =
S = F(2) –F(1) = 
GIẢI:
I = = C
Chọn F(x) = ( C là hằng số)
F(1) = , F(2) =
S = F(2) –F(1) = 
Tiết2: Hoạt động 2: Tìm hiểu khái niệm tích phân qua bài toán diện tích hình thang cong
 Tg 
 Hoạt động của giáo viên
Hoạt động của Hs
Nội dung ghi bảng
8’
5’
-Giáo viên định hướng học sinh giải bài toán 2 (sgk)
+Gọi s(t) là quãng đường đi được của vật cho đến thời điểm t. Quãng đường đi được trong khoảng thời gian từ thời điểm t = a đến thời điểm t = b là bao nhiêu?
+ v(t) và s(t) có liên hệ như thế nào?
+Suy ra f(t) và s(t) có liên hệ như thế nào? 
+Suy ra s(t) và F(t) có liên hệ như thế nào? 
+Từ (1) và (2) hãy tính L theo F(a) và F(b)?
-Giáo viên định hướng học sinh giải quyết nhiệm vụ ở phiếu học tập 2
+Tìm họ nguyên hàm của f(t)?
+Lấy một nguyên hàm của F(t) của f(t) trong họ các nguyên hàm đã tìm được
+Tính F(20) và F(50)?
+Quãng đường L vật đi được trong khoảng thời gian từ t1 =20 đến t2=50 liên hệ như thế nào với F(20) và F(50)
-Học sinh tiến hành giải dưới sự định hướng của giáo viên 
Quãng đường đi được trong khoảng thời gian từ thời điểm 
 t = a đến thời điểm t = b là :
 L = s(b) – s(a) (1)
 v(t) = s’(t)
s’(t) = f(t) 
s(t) là một nguyên hàm của f(t) suy ra tồn tại C: s(t) = F(t) +C (2)
Từ (1) và (2) L= F(b)–F(a)
-Học sinh tiến hành giải dưới sự định hướng của giáo viên 
I = 
 F(t) = 
F(20) = 640 ; F(50) = 3850
Suy ra L = F(50)–F(20)=3210(m)
b, Quãng đường đi đượccủa1 vật
Bài toán 2: (sgk) 
CM: Quãng đường đi được trong khoảng thời gian từ thời điểm 
 t = a đến thời điểm t = b là :
 L = s(b) – s(a) (1)
 v(t) = s’(t)
s’(t) = f(t) 
s(t) là một nguyên hàm của f(t) suy ra tồn tại C: s(t) = F(t) +C (2)
Từ (1) và (2) L= F(b)–F(a)
GIẢI:
I = 
 F(t) = 
F(20) = 640 ; F(50) = 3850
Suy ra L = F(50)–F(20)=3210(m)
4
 Hoạt động 3: Tìm hiểu khái niệm tích phân 
Tg
 Hoạt động của giáo viên
Hoạt động của Hs
Nội dung ghi bảng
7’
5’
15’
-Giáo viên nêu định nghĩa tích phân (sgk)
-Giáo viên nhấn mạnh. Trong trường hợp a < b, ta gọi là tích phân của f trên đoạn [a ; b ].
Giáo viên yêu cầu học sinh trả lời câu hỏi (H2)
Gợi ý:
-Gọi F(x) = g(x) +C là họ các nguyên hàm của f(x)
-Chọn nguyên hàm F1(x) = g(x)+C1
bất kì trong họ các nguyên hàm đó.
-Tính F1(a), F1(b)?
-Tính ?
-Nhận xét kết quả thu được
-Giáo viên lưu ý học sinh: Người ta còn dùng kí hiệu F(x)| để chỉ hiệu số F(b) -F(a).
-Hãy dùng kí hiệu này để viết 
-Giáo viên lưu ý học sinh: Người ta gọi hai số a, b là hai cận tích phân, số a là cận dưới, số b la cận trên, f là hàm số dưới dấu tích phân, f(x)dx là biểu thức dưới dấu tích phân và x là biến số lấy tích phân
-Giáo viên định hướng học sinh giải quyết nhiệm vụ ở phiếu học tập số 3 
Học sinh tiếp thu và ghi nhớ
Học sinh tiến hành giải dưới sự định hướng của giáo viên 
Giả sử: F(x) = = g(x)+C
Chọn F1(x) = g(x)+C1 bất kì 
F1(a) = g(a)+C1
 F1(b) = g(b)+C1
 = [g(b)+C1]-[g(a)+C1]
 = g(b) – g(a)
Không phụ thuộc vào cách chọn C1 đpcm
Học sinh tiếp thu , ghi nhớ
Giả sử F(x) là một nguyên hàm của f(x) thì: = F(x)| 
Học sinh giải quyết dưới sự định hướng của giáo viên:
 5
2/Khái niệm tích phân
 Định nghĩa: (sgk)
Người ta còn dùng kí hiệu F(x)| để chỉ hiệu số F(b) -F(a).Như vậy nếu F là một nguyên hàm của f trên k thì : = F(x)|
5’
 a) 
-Tìm nguyên hàm của 2x?
-Thay các cận vào nguyên hàm trên
 b) 
-Tìm nguyên hàm của sinx?
-Thay các cận vào nguyên hàm trên 
 c) 
-Tìm nguyên hàm của ?
-Thay các cận vào nguyên hàm trên 
d) 
-Tìm nguyên hàm của ?
-Thay các cận vào nguyên hàm trên
+Với định nghĩa tích phân như trên, kết quả thu được ở bài toán 1 được phát biểu lại như thế nào?
-Giáo viên thể chế hóa tri thức, đưa ra nội dung của định lý 1:Cho hàm số y = f(x) liên tục và không âm trên K; a và b là hai số thuộc K 
( a<b). Khi đó diện tích S của hình thang cong giới hạn bởi đồ thị hàm số y = f(x) trục hoành và 2 đường thẳng x = a, x =b là: S = 
-Giáo viên hướng dẫn học sinh trả lời H3.
-Theo kết quả của bài toán 2. quãng đường vật đi được từ điểm a đến thời điểm b được tính như thế nào?
-Dựa vào định nghĩa tích phân hãy viết lại kết quả thu được?
a) = x2| = 25 – 1 = 24
b) = - cosx |=- (0 -1) =1
c)= tanx|= 
d)= ln|x||= ln4 – ln2 =ln 
 = ln2
Học sinh thảo luận theo nhóm trả lời.
Học sinh giải quyết dưới sự định hướng của giáo viên:
Theo kết quả của bài toán 2. Quãng đường vật đi được từ điểm a đến thời điểm b là:
 L = F(b) –F(a)
F(x) là nguyên hàm của f(x)
Theo định nghĩa tích phân
 = F(b) –F(a)
 L = (đpcm)
Giải:
a) = x2| = 25 – 1 = 24
b) = - cosx |=- (0 -1) =1
c)= tanx|= 
d)= ln|x||= ln4 – ln2 =ln 
 = ln2
ĐỊNH LÍ1: Cho hàm số y = f(x) liên tục và không âm trên K; a và 
b là hai số thuộc K 
( a<b). Khi đó diện tích S của hình thang cong giới hạn bởi đồ thị hàm số y = f(x) trục hoành và 2 đường thẳng x = a, x =b là: 
 S = 
Theo kết quả của bài toán 2. Quãng đường vật đi được từ điểm a đến thời điểm b là:
 L = F(b) –F(a)
F(x) là nguyên hàm của f(x)
Theo định nghĩa tích phân
 = F(b) –F(a)
 L = (đpcm)
6
Tiết3: Hoạt động 4: Tìm hiểu các tính chất của tích phân; 
Tg
 Hoạt động của giáo viên
Hoạt động của Hs
Nội dung ghi bảng
15’
-Giáo viên phát biểu định lí 2(sgk) 
-Giáo viên định hướng học sinh chứng minh các tính chất trên: Giả sử F là một nguyên hàm của f, G là một nguyên hàm của g .
 1) = 0
-Nguyên hàm của f(x) ?
-Thay các cận vào nguyên hàmtrên?
 2) = - 
 = ?
 = ? 
3) + = 
 = ?
 = ? 
 = ?
4) F(x) là nguyên hàm của f(x), G(x) là nguyên hàm của g(x)
 nguyên hàm của f(x) + g(x) =?
+ = ?
Học sinh tiếp thu và ghi nhớ
Học sinh thực hiện dưới sự định hướng của giáo viên 
= F(x)|= F(a) – F(a) = 0
= F(x)|= F(b) – F(a)
= F(x)|= F(a) – F(b)
= - 
 + =F(x)|+F(x)|=F(b) – F(a) + F(c) – F(b)= F(c) – F(a)
= F(x)|= F(c) – F(a)
 + = 
4) 
= 
 = F(b) – F(a) + G(b) – G(a) 
 + = F(x)|+G(x)|
= F(b) – F(a) + G(b) –G(a) (đpcm)
3 Tính chất của tích phân
ĐỊNH LÍ2: (sgk)
CM:(Giáo viên HD chứng minh tính chất 3,4,5)
1)= F(x)|=F(a) – F(a)= 0
2)= F(x)|= F(b) – F(a)
= F(x)|= F(a) – F(b)
= - 
3) + =F(x)|+F(x)|=F(b) – F(a) + F(c) – F(b)= F(c) – F(a)
= F(x)|= F(c) – F(a)
 + = 
4) 
= 
 = F(b) – F(a) + G(b) – G(a) 
 + = F(x)|+G(x)|
= F(b) – F(a) + G(b) –G(a) (đpcm)
25’
5) F(x) là nguyên hàm của f(x)
 nguyên hàm của kf(x)?
=?
=?
Giáo viên định hướng học sinh giải quyết nhiệm vụ ở phiếu học tập số 4 
Biểu thức của tính chất 4?
Áp dụng tính chất này tính tích phân trên?
Xét dấu của x – 2 trên [1: 3]?
Áp dụng tính chất 3 tính tích phân trên?
5) = 
=kF(b)- kF(a) = k[F(b) – F(a)]
= kF(x)=k[F(b) – F(a)]
=
Học sinh thực hiện dưới sự định hướng của giáo viên 
I = 
 = 
 = - cos2x |- sinx |
 = -(cos - cos0 ) - sin-sin0
 = 0
J= 
 = +
 = [-]+[]= 1
5) = 
=kF(b)- kF(a) = k[F(b) – F(a)]
= kF(x)=k[F(b) – F(a)]
=
I = 
 = 
 = - cos2x |- sinx |
 = -(cos - cos0 ) - sin-sin0
 = 0
J= 
 = +
 = [-]+

File đính kèm:

  • doc§3.TICHPHAN.(63-64).doc