Giáo án dạy thêm lớp 11 Nâng Cao

Buổi 1

HÀM SỐ LƯỢNG GIÁC

Ngày soạn: Ngày dạy:

I. Môc tiªu bµi häc:

 - VÒ kiến thức: khái niệm các hàm số lượng giác, tính chất cơ bản

 - VÒ kỹ năng: xét tính chẵn, lẻ, tìm chu kì, GTLN, GTNN

 - VÒ ý thøc, thaùi ñoä: Tích cực ,chủ động nắm kiến thức theo sự hướng dẫn của GV, sáng tạo trong quá trình tiếp thu kiến thức mới.

II. Ph­¬ng tiÖn d¹y häc

 1. ChuÈn bÞ cña GV:

- Sgk , Gi¸o ¸n, SBT

 2. ChuÈn bÞ cña HS: SGK, SBT ,Ôn bài,làm bài tập ở nhà

 

doc69 trang | Chia sẻ: tuananh27 | Lượt xem: 799 | Lượt tải: 0download
Bạn đang xem trước 20 trang mẫu tài liệu Giáo án dạy thêm lớp 11 Nâng Cao, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
nếu HS không trình bày đúng lời giải).
HS thảo luận để tìm lời giải và cử đại diện lên bảng trình bày lời giải của nhóm (có giải thích)
HS nhận xét, bổ sung và sửa chữa ghi chép.
HS trao đổi để rút ra kết quả:
HS chú ý theo dõi trên bảng để tiếp thu phương pháp giải
Bài tập 2: 
Cho hình chóp S.ABCD có đáy ABCD là một hình thang với AB//CD ; goi G, G’ lần lượt là trong jtâm của các tam giác SAD, SBC. Chứng minh đường thẳng GG’ song song với mặt phẳng (SAB).
	HĐ2: Củng cố và hướng dẫn học ở nhà:
*Củng cố:
-Nêu lại phương pháp chứng minh đường thẳng song song với mặt phẳng.
*Hướng dẫn học ở nhà:
-Xem lại các bài tập đã giải và làm thêm các bài tập sau:
BT1.Cho tứ diện ABCD, gọi E là trung điểm của cạnh BD, I và J lần lượt là trung điểm các đoạn CE và CA. chứng minh đường thẳng IJ song song với mặt phẳng (ABD)
BT2. Cho hình chóp S.ABCD có đáy ABCD là hình thang, AB//CD và CD > AB. Một mp(P) đi qua AB và cát các cạnh SC, SD lần lượt tại M và N. Chứng minh MN//mp(ABCD)
-----------------------------------˜&™------------------------------------
TCH6: Tiết 3
Ôn tập lại kiến thức về hai mặt phẳng song song và bài tập áp dụng.
Ngµy so¹n:
Ngµy d¹y :
*Tiến trình giờ dạy:
-Ổn định lớp, chia lớp thành 6 nhóm.
-Kiểm tra bài cũ: Đan xen với các hoạt động nhóm.
+Ôn tập kiến thức:
Ôn tập kiến thức cũ bằng các đưa ra hệ thống câu hỏi sau:
+ Nêu điều kiện cần và đủ để hai mp song song;
+Nêu lại phương pháp chứng minh hai mặt phẳng song song.
+Nhắc lại định lí Ta-Lét trong không gian,
+Bài mới:
Hoạt động của GV
Hoạt động của HS
Nội dung
HĐ1: Bài tập về xác định giao điểm của một đường thẳng và mp.
GV gọi một HS nêu đề bài tập 1 trong SGK trang 71 và cho HS cá nhóm thảo luận và ghi lời giải vào bảng phụ.
GV gọi HS đại diện lên bảng trình bày lời giải.
GV gọi HS nhận xét, bổ sung (nếu cần)
GV nhận xét và nêu lời giải đúng.
(GV nên vẽ hình trước khi HS lên bảng)
HS xem đề và thảo luận nhóm
Cử đại diện lên bảng trình bày lời giải (có giải thích)
HS nhận xét, bổ sung và sửa chữa ghi chép.
HS các nhóm trao đổi để rút ra kết quả:
HS chú ý theo dõi trên bảng
Bài tập 1: (SGK trang 71)
GV hướng dẫn: Chứng minh hai mp (a,AD) và (b,BC) song song với nhau.
Hoạt động của GV
Hoạt động của HS
Nội dung
HĐ2: Bài tập về chứng minh đường thẳng song song với mp:
GV nêu đề và ghi lên bảng (hoặc phát phiếu HT)
GV cho HS các nhóm thảo luận để tìm lời giải và gọi HS đại diện nhóm lên bảng trình bày.
Gọi HS nhận xét, bổ sung (nếu cần)
GV nhận xét, bổ sung và nêu lời giải đúng (nếu HS không trình bày đúng lời giải)
HS thảo luận theo nhóm để tìm lời giải và cử đại diện lên bảng trình bày (có giải thích).
HS nhận xét, bổ sung và sửa chữa ghi chép.
HS trao đổi để rút ra kết quả:
Bài tập: Cho hình bình hành ABCD và ABEF nằm trong hai mp phân biệt. Gọi M, N là hai điểm di động trên hai đoạn thẳng AD và BE sao cho:
Chứng minh rằng MN luôn song song với một mp cố định.
LG: Trong mp (ABCD), qua M kẻ đường thẳng song song với AB cắt BC tại P, ta có:
.
Ta có: (MNP)//(DCE) (vì MP//DC và PN//CE)
Mà MN nằm trong (MNP) nên MN song song với (DCE) (cố định)
HĐ3: Củng cố và hướng dẫn học ở nhà:
-Gọi HS nhắc lại phương pháp tìm giao tuyến của hai mp, cách tìm giao điểm của một đường thẳng với một mp, cách chứng minh một đường thẳng song song với một mp, phương pháp chứng minh hai đường thẳng song song. Hai mp song song,
-Xem lại các bài tập đã giải; làm thêm các bài tập sau:
Bài tập 1: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành.
a)Hãy xác định giao tuyến của hai mp (SAB) và (SCD) và giao tuyến của hai mp (SAC) và (SBD).
b)Một mp () thay đổi qua BC cắt cạnh SA tại A’(A’ không trùng với S và A và cắt cạnh SD tại D’. Tứ giác BCD’A’ là hình gì?
c)Gọi I là giao điểm của BA’ và CD’, J là giao điểm của CA’ và BD’. Với () như câu b) thì I và J chạy trên các đường nào?
Bài tập 2: Cho tứ diện ABCD có AB = CD. Gọi M, N là hai điểm thay đổi trên hai cạnh AB và CD sao cho BM = CN. Chứng minh rằng MN luôn luôn song song với một mặt phẳng cố định.
-----------------------------------˜&™------------------------------------
 TCH7: Tiết 4
Bài tập áp dụng về quan hệ song song trong không gian
Ngµy so¹n:
Ngµy d¹y :
-Ổn định lớp, chia lớp thành 6 nhóm.
-Kiểm tra bài cũ: Đan xen với các hoạt động nhóm.
+Ôn tập kiến thức:
Ôn tập kiến thức cũ bằng các đưa ra hệ thống câu hỏi sau:
+ Nêu pp tìm giao tuyến của 2 mp (nêu 2 phương pháp khi hai mp có 1 điểm chung và khi 2 mp song song)
+Nêu lại phương pháp chứng minh đường thẳng song song mặt phẳng.
*Áp dụng: Giải bài tập 2 về nhà.
GV gọi HS nhận xét. bổ sung và giáo viên nêu lời giải đúng (nếu HS không trình bày đúng lời giải).
+Bài mới:
Hoạt động của GV
Hoạt động của HS
Nội dung
HĐ1: Bài tập về xác định thiết diện và chứng minh đường thẳng song song với mp:
GV nêu đề và ghi lên bảng, cho HS các nhóm thảo luận để tìm lời giải và ghi lời giải vào bảng phụ. Gọi HS đại diện lên bảng trình bày lời giải.
Gọi HS nhận xét, bổ sung (nếu cần).
GV nhận xét, bổ sung và nêu lời giải đúng (nếu HS không trình bày đúng lời giải).
HS thảo luận theo nhóm để tìm lời giải và cử đại diện lên bảng trình bày (có giải thích).
HS nhận xét, bổ sung và sửa chữa ghi chép.
HS trao đổi để rút ra kết quả:
Bài tập1: Cho hình lập phương ABCD.A’B’C’D’.Gọi M, N, P lần lượt là trung điểm của AB, B’C’, DD’.
a)Hãy xác định thiết diện tạo bởi hình lập phương đã cho và mp (MNP)
b)Chứng minh rằng đường thẳng MN song song với mp (BDC’).
Hoạt động của GV
Hoạt động của HS
Nội dung
HĐ2: 
GV: Để chứng minh hai mp song song với nhau ta phải chứng minh như thế nào?
Để chứng minh hai đường thẳng song song với nhau ta phải ta phải làm gì?
GV nêu đề và ghi lên bảng, cho HS các nhóm thảo luận để tìm lời giải và ghi lời giải vào bảng phụ. Gọi HS đại diện lên bảng trình bày lời giải.
Gọi HS nhận xét, bổ sung (nếu cần).
GV nhận xét, bổ sung và nêu lời giải đúng (nếu HS không trình bày đúng lời giải).
HS suy nghĩ trả lời 
HS thảo luận theo nhóm để tìm lời giải và cử đại diện lên bảng trình bày (có giải thích).
HS nhận xét, bổ sung và sửa chữa ghi chép.
HS trao đổi để rút ra kết quả:
Bài tập2: Từ 4 điểm của hình bình hành ABCD vẽ bốn nửa đường thẳng song song cùng chiều Ax, By, Cz, Dt. Một mp ()cắt 4 nửa đường thẳng Ax, By, Cz, Dt tại A’, B’, C’, D’.
a)Chứng minh hai mp (Ax, By) và (Cz, Dt) song song với nhau.
b)Chứng minh tứ giác A’B’C’D’ là hình bình hành.
c)Gọi O, O’ lần lượt là tâm các hình bình hành ABCD, A’D’C’D’. Chứng minh đường thẳng OO’ song song với đường thẳng AA’ và AA’ +CC’ =BB’ +DD’.
a)(Ax,By)//(Cz,Dt):
Ta có: 
Tứ giác AA’C’C có AA’//CC’ nên là hình thang, OO’ là đường trung bình của hình thang này do đó:
 ;
Chứng minh tương tự ta có: 
Vậy AA’ + CC’ = BB’ + DD’.
HĐ3: Củng cố và hướng dẫn học ở nhà:
-Xem lại các bài tập đã giải và làm thêm các bài tập:
Bài tập 1: Cho đỉnh S nằm ngoài hình bình hành ABCD. Xét mp qua AD cắt SB, SC lần lượt tại M và N. Chứng minh AMND là hình thang.
Bài tập 2: Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của BC và BD. Gọi P là điểm tùy ý trên cạnh AB sao cho PA và P B. Xét I = PDAN và J =PCAM.
Chứng minh rằng: IJ // CD.
-----------------------------------˜&™------------------------------------
Chủ đề 5
DÃY SỐ. CẤP SỐ CỘNG. CẤP SỐ NHÂN
-----------------------------------˜&™------------------------------------
TCĐ11:
Tiết 1. ÔN TẬP KIẾN THỨC VỀ DÃY SỐ VÀ BÀI TẬP ÁP DỤNG
Ngµy so¹n:
Ngµy d¹y :
*Tiến trình giờ dạy:
-Ổn định lớp, chia lớp thành 6 nhóm.
-Kiểm tra bài cũ: Đan xen với các hoạt động nhóm.
+Ôn tập kiến thức
Ôn tập kiến thức cũ bằng các đưa ra hệ thống câu hỏi sau:
+Nêu phương pháp quy nạp toán học.
+Nêu định nghĩa dãy số, dãy số tăng, giảm, dãy số bị chặn trên, bị chặn dưới và bị chặn,
+Bài mới:
Hoạt động của GV
Hoạt động của HS
Nội dung
HĐ1: Phương pháp quy nạp toán học.
HĐTP1: (Ôn tập lại pp quy nạp toán học)
GV gọi một HS nêu lại các bước chứng minh bằng pp quy nạp toán học.
Áp dụng pp chứng minh quy nạp để giải các bài tập sau.
GV nêu đề và ghi lên bảng và cho HS các nhóm thảo luận để tìm lời giải.
Gọi HS đại diện nhóm lên bảng trình bày lời giải.
Gọi HS nhận xét, bổ sung (nếu cần)
GV nhận xét, bổ sung và nêu lời giải chính xác (nếu HS không trình bày đúng lời giải)
HĐTP2:
GV nêu đề bài tập 2 và cho HS các nhóm thảo luận tìm lời giải.
GV gọi HS đại diện nhóm lên bảng trình bày lời giải.
Gọi HS nhận xét, bổ sung (nếu cần)
GV nhận xét, hướng dẫn và phân tích tìm lời giải nếu HS không trình bày đúng lời giải
HS nêu các bước chứng minh một bài toán bằng pp quy nạp.
HS thảo luận để tìm lời giải và cử đại diện lên bảng trình bày lời giải có giải thích.
HS nhận xét, bổ sung và sửa hữa ghi chép.
HS trao đổi và rút ra kết quả:
Với n = 1, VT = 1.2 = 2
VP = 12(1+1) = 2
Do đó đẳng thức (1) đúng với n=1.
Đặt VT = Sn.
Giả sử đẳng thức(1) đúng với n = k, k1, tức là: 
Sk = 1.2 +2.5+3.8+ +k(3k-1)=k2(k+1) 
Ta phải chứng minh (1) ccũng đúng với n = k +1, tức là:
Sk+1= (k+1)2(k+2)
Thật vậy, theo giả thiết quy nạp ta có:
Sk+1=Sk+(k+1)[3(k+1)-1]=
k2(k+1)+(k+1)(3k+2)=
=(k+1)(k2+3k+2)=(k+1)2(k+2)
Vậy đẳng thức (1) đúng với mọi .
HS thảo luận để tìm lời giải
HS nhận xét, bổ sung và sửa chữa ghi chép
HS chú ý theo dõi trên bảng
Bài tập: Chứng minh rằng:
1.2 +2.5+3.8+ +n(3n-1)=n2(n+1) với (1).
Bài tập 2:
Chứng minh rằng:
n7 – n chia hết cho 7 với mọi .
HĐ2: Ôn tập về dãy số và bài tập áp dụng.
HĐTP1: 
GV gọi HS nhắc lại khái niệm dãy số và dãy số hữu hạn.
Cho biết khi nào thì một dãy số tăng, giảm, bị chặn trên, dưới và bị chặn.
GV nêu đề bài tập và ghi lên bảng, cho HS các nhóm thảo luận tìm lời giải như đã phân công.
Gọi HS đại diện lên bảng trình bày lời giải.
gọi HS nhận xét, bổ sung (nếu cần)
GV nhận xét và nêu lời giải đúng (nếu HS không trình bày đúng lời giải)
HS nhắc lại khía niệm dãy số và nêu khía niệm dãy số tăng, giảm, bị chặn,áyH các nhóm thảo luận để tìm lời giải.
HS đại diện các nhóm lên bảng trình bày lời giải (có giải thích)
HS nhận xét, bổ sung và sửa chữa ghi

File đính kèm:

  • doclehungtranvinh.doc
Giáo án liên quan