Giáo án Đại số Giải tích 11 - Nâng cao - Tiết 20: Câu hỏi và bài tập ôn chương I

Tiết soạn: 20

 CÂU HỎI VÀ BÀI TẬP ÔN CHƯƠNG I

I, MỤC TIÊU:

1, Về kiến thức:

Trong tiết học này, giúp HS ôn lại:

 Hàm số lượng giác. Tập xác định, tính chẵn lẻ, tính tuần hoàn và chu kì

 Dạng đồ thị của các hàm lượng giác.

 Các công thức biến đổi tích thành tổng và tổng thành tích.

 Công thức biến đổi

 Phương trình lượng giác cơ bản.

 Phương trình đưa về phương trình bậc hai đối với các hàm số lượng giác.

 Phương trình asinx + bcosx = c.

 

doc4 trang | Chia sẻ: tuananh27 | Lượt xem: 887 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Giáo án Đại số Giải tích 11 - Nâng cao - Tiết 20: Câu hỏi và bài tập ôn chương I, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Ngày sọan:10/10/2007 Ngày giảng:15/10/2007
Tiết soạn: 20
 Câu hỏi và bài tập ôn chương I
I, Mục tiêu:
1, Về kiến thức:
Trong tiết học này, giúp HS ôn lại: 
Ÿ Hàm số lượng giác. Tập xác định, tính chẵn lẻ, tính tuần hoàn và chu kì
 Ÿ Dạng đồ thị của các hàm lượng giác.
Ÿ Các công thức biến đổi tích thành tổng và tổng thành tích.
Ÿ Công thức biến đổi 
Ÿ Phương trình lượng giác cơ bản.
Ÿ Phương trình đưa về phương trình bậc hai đối với các hàm số lượng giác.
Ÿ Phương trình asinx + bcosx = c.
2, Về kỹ năng:
Ÿ Biết cách vẽ đồ thị của các hàm số lượng giác.
Ÿ Biết cách sử dụng đồ thị để xác định các điểm tại đó hàm số lượng giác nhận giá trị âm, giá trị dương và các giá trị đặc biệt.
Ÿ Biết cách biến đổi lượng giác: tổng thành tích, tích thành tổng.
Ÿ Biết cách giải phương trình lượng giác cơ bản.
3, Về tư duy
	- Phát triển khả năng tư duy lôgic, tính sáng tạo trong học tập.
4, Về thái độ:
	- Nghiêm túc, tích cực và tự giác. 
II, Chuẩn bị phương tiện dạy học:
1, Thực tiễn:
	-
2, Phương tiện:
	- 
3, Phương pháp:
	- Đàm thoại, gợi mở kết hợp hoạt động nhóm HT. 
III, Tiến trình bài dạy và các hoạt động.
A, Các hoạt động dạy học:
Hoạt động 1: Ôn tập lý thuyết hàm số lượng giác.
Hoạt động 2: rèn luyện kỹ năng xác định SBT và đồ thị HSLG.
Hoạt động 3: Ôn lại PTLG cơ bản.
Hoạt động 4: Ôn tập lại dạng phương trình asinx + bcosx = c.
Hoạt động 5: Củng cố bài học và HD HS học ở nhà.
B, Tiến trình bài dạy:
	Hoạt động 1: Kiểm tra bài cũ.
1, Kiểm tra bài cũ: kết hợp kiểm tra trong bài giảng.
2, Dạy bài mới:
Hoạt động 1: Ôn tập lý thuyết hàm số lượng giác.
GV đưa ra các câu hỏi sau đây:
Câu hỏi 1
Hàm số y = sinx, y = cosx, y = tanx, y = cotx tuần hoàn với chu kì nào nào?
Câu hỏi 2
Hàm số y = sinx đồng biến trên khoảng nào và nghịch biến trên khoảng nào( 0; 2)?
Câu hỏi 3
Hàm số y = cosx đồng biến trên khoảng nào và nghịch biến trên khoảng nào( 0; 2)?
Câu hỏi 4
Hàm số y = tanx đồng biến trên khoảng nào và nghịch biến trên khoảng nào( 0; )?
Câu hỏi 5
Hàm số y = cotx đồng biến trên khoảng nào và nghịch biến trên khoảng nào( 0; )?
Câu hỏi 6
Hàm số y = sinx, y = cosx nhận giá trị trong tập nào?
Câu hỏi 7
Hàm số y = tanx, y = cosx xác định trong tập nào?
 	Câu hỏi 8
Từ đồ thị hàm số y = sinx suy ra đồ thị hàm số y = cosx như thế nào?
Câu hỏi 9
Từ đồ thị hàm số y = tanx suy ra đồ thị hàm số y = cotx như thế nào?
Câu hỏi 10
Nêu điều kiện của m để phương trình sinx = m, cosx = m có nghiệm.
Câu hỏi 11
Nêu công thức nghiệm của phương trình sinx = sin.
Câu hỏi 12
Nêu công thức nghiệm của phương trình cosx = cos.
Câu hỏi 13
Nêu công thức nghiệm của phương trình tanx = tan.
Câu hỏi 14
Nêu tóm tắt cách giải phương trình bậc nhất, bậc hai đối với một hàm số lượng giác.
Câu hỏi 15
Nêu tóm tắt cách giải phương trình bậc nhất với một sinx và cosx.
Câu hỏi 16
Nêu điều kiện của a, b và c để phương trình asinx + bcosx = c có nghiệm.
Hoạt động 2: rèn luyện kỹ năng xác định SBT và đồ thị HSLG.
Bài 43
Mục đích. Ôn tập lại sự biến thiên của các hàm số lượng giác.
GV cho học sinh trả lời và kết luận.
a) Đúng;	b) Sai;	c) Đúng;	d) Sai;
e) Sai;	f) Đúng;	g) Sai;
Bài 44
Hoạt động của GV
Hoạt động của HS
Câu hỏi 1
Chứng minh
sin(x+ m) = sinx
Câu hỏi 2
Hãy lập bảng biến thiên của hàm số
Câu hỏi 3.
Vẽ đồ thị h số.
Gợi ý trả lời câu hỏi 1
Đặt m = 2k, do hàm số y = sinx tuần hoàn với chu kì 2nên với mọi x, ta có f(x + m) = sin[(x + 2k) ] = sin(x + 2k) = sinx = f(x).
Gợi ý trả lời câu hỏi 2
GV cho HS tự lập bảng biến thiên của hàm số
Gợi ý câu hỏi 3.
Giáo viên treo đồ thị chuẩn bị sẵn nhà và cho học sinh vẽ lại.
Hoạt động 3: Ôn lại PTLG cơ bản.
Bài 46
Hoạt động của GV
Hoạt động của HS
Câu hỏi 1
 Giải phương trình:
Câu hỏi 2
 Giải phương trình:
Gợi ý trả lời câu hỏi 1
Ta có. , do đó:
 và 
Gợi ý trả lời câu hỏi 2
Hoạt động 4: Ôn tập lại dạng phương trình asinx + bcosx = c.
Bài 48: 
Hoạt động của GV
Hoạt động của HS
Câu hỏi 1
 Chứng minh rằng 
Câu hỏi 2 
 Giải phương trình:
 .
Gợi ý trả lời câu hỏi 1
, từ đó suy ra kết quả.
Gợi ý trả lời câu hỏi 2
và 
Hoạt động 5:
	3, Củng cố toàn bài:
- Nhắc lại các bước khảo sát và vẽ đồ thị các HSLG.
- Công thức nghiệm của các PTLG cơ bản.
- PP giải phương trình asinx + bcosx = c. 
	4, Hướng dẫn HS học ở nhà:
- Ôn lại bài đã học.
- Chuẩn bị các bài tập: 47, 49, 50 SGK.

File đính kèm:

  • docDSNC11_T20.doc