Giáo án Đại số 9 Trường THCS Thạnh Đông

I. Mục tiêu: Qua bài này HS cần:

 - Nắm được định nghĩa, ký hiệu về căn bậc hai số học của số không âm.

 - Biết được liên hệ giữa phép khai phương với quan hệ thứ tự và dùng liên hệ này để so sánh các số.

 - Rèn luyện tính cẩn thận, chính xác, yêu thích môn học.

II. Chuẩn bị của GV và HS:

- GV: SGK, phấn màu, thiết kế bài giảng, bảng phụ hình 1 (SGK).

- HS: SGK.

III. Hoạt động của GV và HS:

 

doc139 trang | Chia sẻ: oanh_nt | Lượt xem: 1396 | Lượt tải: 1download
Bạn đang xem trước 20 trang mẫu tài liệu Giáo án Đại số 9 Trường THCS Thạnh Đông, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
 tr 12 SGK
GV đưa đề bài lên bảng phụ yêu cầu hai HS lên bảng mỗi em tìm nghiệm tổng quát của một phương trình.
GV lưu ý HS có thể biểu diễn nghiệm tổng quát là y, rồi biểu thị x theo y
GV yêu cầu HS 3 lên bảng vẽ đường thẳng biểu diễn tập nghiệm của hai phương trình trên cùng một hệ trục toạ độ rồi xác định nghiệm chung của chúng.
H: Hãy thử lại để xác định nghiệm
 chung của hai phương trình .
GV: Vậy cặp số (3 ; -2) chính là nghiệm duy nhất của hệ phương trình 
Bài 8 tr 12 SGK
GV yêu cầu HS hoạt động nhóm
Nửa lớp làm câu a.
Nửa lớp làm câu b.
GV kiểm tra các nhóm hoạt động 
GV cho các nhóm HS hoạt động khoảng 5’ thì dừng lại, mời đại diện hai nhóm HS lên trình bày.
Bài 9a, 10a tr 12 SGK
Đoán nhận số nghiệm của mỗi hệ phương trình giải thích vì sao?
9a)
H: Để đoán nhận nghiệm của hệ phương trình này ta cần làm gì?
- Hãy thực hiện.
10a) 
Hai HS lên bảng 
HS 1: Phương trình 2x + y = 4 (3)
nghiệm tổng quát
HS 2: Phương trình 3x + 2y = 5 (4)
nghiệm tổng quát 
HS 3 :
Hai đường thẳng cắt nhau tại M(3 ; -2)
HS trả lời miệng 
- Thay x = 3 ; y = -2 vào vế trái phương trình (3)
VT = 2x + y = 2.3 – 2 = 4 = VP
 - Thay x = 3 ; y = -2 vào vế trái phương trình (4)
VT = 3x + 2y = 3.3 + 2.(-2) = 5 = VP
Vậy cặp số (3 ; -2) là nghiệm chung của hai phương trình (3) và (4).
HS hoạt động nhóm làm bài trên bảng nhóm.
a) Cho hệ phương trình
Đoán nhận: Hệ phương trình có một nghiệm duy nhất vì đường thẳng x = 2 song song với trục tung, còn đường thẳng 2x – y = 3 cắt trục tung tại điểm
 (0 ; -3) nên cũng cắt đường thẳng x = 2
Vẽ hình
Hai đường thẳng cắt nhau tại Q(2 ; 1)
Thử lại: Thay x = 2 ; y = 1 vào vế trái phương trình 2x – y = 3
VT = 2x – y = 2,2 – 1 = 3 = VP.
Vậy nghiệm của hệ phương trình là 
(2 ; 1)
b) Cho hệ phương trình 
Đoán nhận : Hệ phương trình có nghiệm duy nhất vì đường thẳng 2y = 4 hay y = 2 song song với trục hoành, đường thẳng x + 3y = 2, cắt trục hoành tại điểm 
(2 ; 0) nên cũng cắt đường thẳng 2y = 4
Vẽ hình 
Hai đường thẳng cắt nhau tại P(-4 ; 2)
Thử lại: Thay x = -4 ; y = 2 vào vế trái phương trình x + 3y = 2
VT = x + 3y = -4 + 3.2 = 2 = VP
Vậy nghiệm của hệ p.trình là (-4 ; 2)
Đ: Ta cần đưa các phương trình trên về dạng hàm số bậc nhất rồi xét vị trí tương đối của hai đường thẳng
Hai đường thẳng trên có hệ số góc bằng nhau, tung độ khác nhau nên hai đường thẳng song song do đó hệ hpương trình vô nghiệm.
HS làm vào vở 
Một HS lên bảng thực hiện
Hai đường thẳng trên có hệ số góc bằng nhau tung độ gốc bằng nhau nên hai đường thẳng trùng nhau do đó hệ phương trình có vô số nghiệm.
Hoạt động 3. CỦNG CỐ 4’
H: Hãy nêu cách nhận đoán số nghiệm của hệ phương trình bậc nhất hai ẩn?
H: Làm thế nào để xác định nghiệm của hệ phương trình?
GV: Giới thiệu cho HS có thể đoán nhận nghiệm của phương trình dựa vào kết quả sau: Cho hệ phương trình
GV: Hãy áp dụng xét hệ phương trình bài 10a SGK
Đ: Đưa các phương trình của hệ về dạng hàm số bậc nhất rồi xét vị trí tương đối của hai đường thẳng.
Đ: Vẽ hai đường thẳng của hệ rồi xác định toạ độ giao điểm.
HS nghe GV trình bày ghi lại kết luận để áp dụng.
HS : Hệ phương trình
Có
Suy ra hệ phương trình vô số nghiệm
4. Hướng dẫn về nhà(3’)
	- Nắm vững kết luận mối quan hệ các hệ để phương trình có nghiệm duy nhất,vô nghiệm,vô sốnghiệm
	- Bài tập về nhà số 10, 12, 13 tr 5, 6 SBT
	- Đọc trước §3. Giải hệ phương trình bằng phương pháp thế.
IV. RÚT KINH NGHIỆM
………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………
DUYỆT CỦA TỔ CHUYÊN MÔN 
………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………
………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………
Ngày soạn : 5/12/2013
Tiết 33 
ÔN TẬP HỌC KÌ I .
I / MỤC TIÊU :
 - Hệ thống hóa các kiến thức cơ bản của chương , giúp HS kiểu sâu hơn, nhớ lâu hơn về các khái niệm ham số, biến số, đồ thị hàm số 
 - Giúp HS vẽ thành thạo đồ thị của hàm số bậc nhất, xác định được góc của đường thẳng y = ax+b và trục Ox, xác định được hàm số y=ax+b thỏa mãn điều kiện đề bài 
II / CHUẨN BỊ :
 - GV : Thước thẳng, bảng tóm tắt kiến thức chương.
 - HS : Ôn bài , làm bài đã dặn, soạn các câu hỏi ôn chương.
III / TIẾN TRÌNH BÀI DẠY : 
1) OÅn ñònh toå chöùc: Kieåm tra neà neáp - Ñieåm danh 
2) Kiểm tra bài cũ : 
 GV kiểm tra các câu hỏi soạn của HS.
 3) Dạy học bài mới : 
Hoạt động của thầy
Hoạt động của trò
Ghi bảng
* Ôn lý thuyết :
GV cho HS trả lời các câu hỏi ôn chương.
* Luyện tập :
Cho HS làm vào tập.
Gọi 4 HS lên bảng sửa bài.
Cho HS làm theo nhóm.
Từng nhóm trình bày bài giải.
- Bài 3 :
 Cho HS hoạt động nhóm.
 GV kiểm tra bài làm của từng nhóm, góp ý , hướng dẫn.
Bài 1 : Tính
55
4,5
45
Bài 2:
-
1
 23
-(3+5ab)
Bài 3
a) ĐK : x >=1
 x = 5
b) ĐK : x >=0
 x = 9
HS hoạt động theo nhóm.
HS viết vào bảng phụ và treo lên bảng.
 ÔN TẬP HỌC KÌ I .
Dạng 1 : Rút gọn, tính giá trị biểu thức :
Bài 1 : Tính
Bài 2: Rút gọn các biểu thức sau :
Dạng 2 : Tìm x:
Bài 3 : Giải phương trình :
Dạng 3 : Bài tập rút gọn : 
VD : Cho đẳng thức : 
 Với a > 0 và a1
Rút gọn P.
Tìm giá trị của a để P > 0. 
 Giải :
Vậy Với a > 0 và a1
b) Do a > 0 và a1 nên P<0 khi và chỉ khi
 4) Hướng dẫn về nhà : 
 - Học lý thuyết và làm bài tập các bài tập đã sửa.
IV. RÚT KINH NGHIỆM
………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………
Ngày soạn : 5/12/2013
Tiết 34 
ÔN TẬP HỌC KÌ I
I. MỤC TIÊU.
Kiến thức: Tiếp tục củng cố bài tập rút gọn tổng hợp của biểu thức căn. Ôn tập cho HS các kiến thức cơ bản của chương II: Khái niệm về hàm số bậc nhất y = ax + b tính đồng biến tính nghịch biến của hàm số bậc nhất, điều kiện để hai đường thẳng cắt nhau, song song với nhau, trùng nhau.
Kỹ năng: Luyện tập thêm việc rút gọn tổng hợp của biểu thức căn; xác định phương trình đường thẳng, vẽ đò thị hàm số bậc nhất 
Thái độ: Tính cẩn thận trong xác định điểm và vẽ đồ thị.
II. CHUẨN BỊ CỦA THẦY VÀ TRÒ.
Thầy: + Bảng phụ có kẽ sẵn ô vuông để vẽ đồ thị, bảng phụ dể ghi câu hỏi, bài tập
 + Thước thẳng, com pa, phấn màu. 
Trò: + Ôn tập chương II và làm bài tập GV yêu cầu.
 + Thước kẻ com pa, giấy kẻ sẵn ô vuông, bảng phụ nhóm.
III.TIẾN TRÌNH TIẾT DẠY.
Ổn định tổ chức:
Kiểm tra bài cũ:(kiểm tra trong quá trình ôn tập)
Bài mới 
	¯Giới thiệu vào bài 
	¯ Các hoạt động dạy
HOẠT ĐỘNG CỦA GIÁO VIÊN
HOẠT ĐỘNG CỦA HỌC SINH
KIẾN THỨC
Hoạt động 1. KIỂM TRA KẾT HỢP CHỮA BÀI TẬP RÚT GỌN BIỂU THỨC
Bài 1: (cho về nhà tiết trước)
 GV yêu cầu 1 HS lên bảng làm bài tập 1 đã cho về nhà ở tiết trước 
a) Rút gọn P
b) Tính P khi 
c) Tìm x để 
d) Tìm giá trị nhỏ nhất của P
GV yêu cầu HS tiếp tục lên bảng giải câu b và c, mỗi HS 1 câu.
GV Hướng dẫn giải mẫu câu d)
Tìm giá tri nhỏ nhất của P
- Có nhận xét gì về giá trị của P?
- Vậy P nhỏ nhất khi nào?
GV có thể hướng dẫn cách khác 
1 HS trình bày giải câu a) trên bảng 
a) Rút gọn P
đk: 
HS cả lớp liểm tra bài rút gọn của bạn 
d) HS trả lời miệng 
- theo kết quả rút gọn 
Mẫu 
Hoạt động 2. ÔN TẬP CHƯƠNG II: HÀM SỐ BẬC NHẤT 
Dạng 1: xác định hàm số thoả mãn điều kiện
Bài 1:
Bài 2:
Dạng 2: xác định điều kiện thoả mãn vị trí tương đối của haiđường thẳng.
Bài 3:
GV nêu câu hỏi thế nào là hàm số bậc nhất? hàm số bậc nhất đồng biến khi nào? nghịch biến khi nào?
GV nêu các bài tập sau
Bài 1: Cho hàm số y = (m + 6)x – 7
a) Với giá trị nào của m thì y là hàm số bậc nhất ?
b) Với giá trị nào của m thì hàm số y đồng biến ? nghịch biến?
GV đưa đề bài lên bảng phụ
Bài 2: Cho đường thẳng 
y = (1 – m)x + m – 2 (d)
a) Với giá trị nào của m thì đường thẳng (d) đi qua điểm A(2 ; 1)
b) Với giá trị nào của m thì đường thẳng (d) tạo với trục Ox một góc nhọn? Góc tù?
c) Tìm m để (d) cắt trục tung tại điểm B có tung độ bằng 3.
d) Tìm m để (d) cắt trục goành tại điểm có hoành đọ bằng -2
GV yêu cầu HS hoạt động nhóm làm bài tập 2
Nửa lớp làm câu a, b
Nửa lớp làm câu c, d
GV cho các nhóm hoạt động khoảng 5 phút thì yêu cầu đại diện nhóm lên trình bày bài. 
Bài 3: Cho hai đường thẳng 
y = kx + (m – 2) (d)
y = (5 – k)x + (4 – m) (d’)
Với điều kiện nào của k và m thì (d) 
(d’)
a) Cắt nhau.
b) Song song với nhau
c) Trùng nhau
GV yêu cầu HS nhắc lại:
Cho đường thẳng y = ax + b (d) (a)
và đường thẳng y = a’x + b’ (d’) (a’ 
Nêu điều kiện về các hệ số để:
(d) // (d’) ; (d)(d’) ; (d) cắt (d’) ?
Hãy áp dụng giải bài 3
H: Với điều kiện nào thì hai hàm số trên là hàm số bậc nhất 
a) Khi nào (d) cắt (d’)
GV yêu cầu HS lên bảng giải câu b, c
HS: Trả lời miệng 
- Hàm số bậc nhất là hàm số được cho bởi công thức y = ax + b trong đod a, b là các số cho trước và 
- Hàm số bậc nhất xác định với mọi giá trị , đồng biến trên R khi a > 0, nghịch biến trên R khi a < 0
HS trả lời
a) y là hàm số bậc nhất 
b) Hàm số y đồng biến nếu m + 6 > 0
Hàm số y nghịch biến nếu m + 6 < 0
HS hoạt động nhóm làm bài
a) Đường thẳng (d) đi qua điểmA(2 ; 1) 
b) (d) tạo với Ox một góc nhọn
* (d) tạo với trục Ox một góc tù 
c) (d) cắt trục tung tại điểm B có tung độ bằng 3
d) (d) cắt trục hoành tại điểm C có hoành độ bằng – 2 
Thay x = - 2 ; y = 0 vào (d)
(1 – m).(-2) + m – 2 = 0
- 2 + 2m + m – 2 = 0
Đại diện hai nhóm trình bày, cả lớp nhận xét chữa bài.
d) // (d’)
(d) 
(d) cắt (d’) 
Đ: y = kx + (m – 2) là hàm số bậc nhất 
y = (5 – k)x + (4 – m) là hàm số bậc nhất 
HS: (d) cắt (d’)
Hai HS lên bảng trình bày
Hoạt động 3. CỦNG CỐ
GV yêu cầu HS tự hệ thống hoá kiến thức của chương II
nhận xét bổ sung hoàn chỉnh
H; hãy nêu các dạng bài tập cơ bản của chương II
Vài HS đọc bản tự hệ thống kiến thức của mình
cả lớp nhận xét bổ sung 
HS tóm tắt các dạng cơ bản gồm:
- Xác định hàm số thoả mãn điều kiện cho trước(đồ thị đi qua một điểm cho trước, tạo với trục hoành góc nhọn góc tù…)
- Xác định tham số m thoả mãn vị trí

File đính kèm:

  • docDAI 9.doc