Giáo án Đại số 11 tiết 49 - 52: Giới hạn dãy số

Tiết: 49-52

§1: GIỚI HẠN DÃY SỐ

I. Mục tiêu bài học:

 Về kiến thức: Giúp học sinh

- Nắm được định nghĩa dãy số có giới

- Ghi nhớ một số dãy số có giới hạn thường gặp.

 Về kỹ năng:

- Biết vận dụng định lí và các kết quả đã nêu ở mục 2) để chứng minh một dãy số có giới hạn 0.

 Tư duy – thái độ:

- Chú ý, tích cực tham gia xây dựng bài.

 - Cẩn thận, chính xác và linh hoạt.

II. Chuẩn bị của thầy và trò:

 Chuẩn bị của G\v:

- Soạn giáo án.

- Chuẩn bị một số đồ dùng dạy học như: thước kẻ, phấn màu

- Bảng phụ: Vẽ hình 4.1 và bảng giá trị của | un | như trong SGK.

 Chuẩn bị của học sinh:

- Đọc kỹ bài học trước khi đến lớp.

 

doc12 trang | Chia sẻ: tuananh27 | Lượt xem: 820 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Giáo án Đại số 11 tiết 49 - 52: Giới hạn dãy số, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
ểu đlí 2 trong SGK.
+ H\s thảo luận theo nhóm và cử đại diện trình bày.
1. Định nghĩa dãy số có giới hạn 0:
Xét dãy số(un) với , tức là dãy số 
 (Bảng phụ: hình 4.1)
Khoảng cách từ điểm un đến điểm 0 trở nên nhỏ bao nhiêu cũng được miễn là n đủ lớn.
(Bảng phụ vẽ bảng giá trị của |un|)
Như vậy mọi số hạng của dãy số đã cho, kể từ số hạng nào đó trở đi, đều có giá trị tuyệt đối nhỏ hơn một số dương nhỏ tùy ý cho trước. Ta nói rằng dãy số có giới hạn 0.
Định nghĩa: SGK
Nhận xét:
Dãy số (un) có giới hạn 0 khi và chỉ khi (|un|) có giới hạn 0.
Vd: lim vì và lim 
Dãy số không đổi (un) với un=0 có giới hạn 0.
2. Một số dãy số có giới hạn 0:
Dựa vào đ\n, người ta c\m được rằng:
a. b.
Đlí 1: Cho hai dãy số (un) và (vn)
Nếu | un | vn với mọi n và lim vn = 0 thì lim un = 0.
C\m: SGK
Vd 1: C\m: lim 
Giải: 
Ta có: và lim
Từ đó suy ra đpcm.
Đlí 2: Nếu | q | < 1 thì lim qn = 0
Vd 2: 
a. lim
b. lim
 1) Âënh nghéa daîy säú coï giåïi haûn hæîu haûn
 	 *Hoaût âäüng 1 :
HÂHS
HÂGV
Näüi dung ghi baíng
T1 : 
T2 : 
H1: 
H2 : tæì âoï coï nhán xeït gç vãö 
Âënh nghéa daîy säú coï giåïi haûn hæîu haûn
Xeït daîy säú våïi 
 . 
Âënh nghéa : (SGK)
 hoàûc hoàûc 
	*Hoaût âäüng 2 :
HÂHS
HÂGV
Näüi dung ghi baíng
HS làõng nghe vaì ghi nháûn
HS hoaût âäüng theo nhoïm
HS lãn baíng, caïc HS dæåïi låïp theo doîi vaì phaït biãøu 
HS nháûn xeït 
GV nãu 
GV treo baíng phuû cho HS hoaût âäüng theo nhoïm
Goüi HS âaûi diãûn nhoïm lãn baíng giaíi
GV theo doîi caïc nhoïm laìm baìi táp naìy
Goüi HS nháûn xeït vaì kãút luáûn cho âiãøm cäüng cho HS laìm täút
Vê duû 1 :(SGK)
Daîy säú khäng âäøi våïi (c laì hàòng säú) coï giåïi haûn laì c vç 
Vê duû 2 : Tçm giåïi haûn sau :
Âàût : 
Váûy giåïi haûn cuía =2
	*Hoaût âäüng 3 :
HÂHS
HÂGV
Näüi dung ghi baíng
HS hoaût âäüng theo nhoïm cuía mçnh
HS trçnh baìy låìi giaíi
HS theo doîi vaì sæîa sai soït
. 
Phán låïp thaình caïc nhoïm hoaût âäüng 
Goüi 2 HS lãn baíng
H1: nhàõc laûi âënh lê 2
Nháûn xeït vaì cho âiãøm
GV goüi HS nãu nháûn xeït sau khi thæûc hiãûn xong hoaût âäüng
. Nãúu , trong âoï L laì mät hàòng säú vaì thç coï kãút luáûn gç vãö giåïi haûn cuía 
Treo baíng phuû lãn baíng gäöm 2 baìi táûp cuía cuía hoaût âäüng H1 SGK
.Nãúu thç 
.
a) 
b)
*Nháûn xeït :
i/ Nãúu , trong âoï L laì mät hàòng säú vaì thç 
ii/ Khäng phaíi moüi daîy säú âãöu coï giåïi haûn hæîu haûn.
Vê duû : daîy säú khäng coï giåïi haûn hæîu haûn
	2) Mäüt säú âënh lê :
*Hoaût âäüng 4 :
HÂHS
HÂGV
Näüi dung ghi baíng
-HS chuï yï vaì phaït biãøu âënh lê
-HS làngs nghe vaì ghi nháûn
HS chuï yï giaíi vê duû naìy
-GV treo baíng phuû vãö näüi dung cuía âënh lê
-GV yãu cáöu HS âoüc vaì hoüc thuäüc âënh lê naìy
GV yãu cáöu HS laìm baìi táp vê duû naìy
Mäüt säú âënh lê :
Âënh lê : (SGK)
a/Giaí sæí . Khi âoï 
a) vaì 
b/ Nãúu våïi moüi n thç vaì 
Vê duû 3 : (SGK)
 vç
*Hoaût âäüng 5 :
HÂHS
HÂGV
Näüi dung ghi baíng
HS hoaût âäüng theo nhoïm
GV cho HS hoaût âäüng theo nhoïm âæåüc phán cäng
Nãu baìi táp vaì cho HS laìm
Tçm 
Vç nãn 
-Nắm được vấn đề đặt ra và thao luận tìm câu trả lời
-Cử đại diện tra lời và nhận xét câu trả lời của các nhóm khác.
-Lắng nghe kết luận của GV và hình dung định nghĩa
-Theo dõi bảng phụ
-Các nhóm tích cực trao đổi đề giải ví dụ 3 và cử đại diện trả lời
-Theo dõi bảng phu 2
-Theo dõi sự mô tả của GV để nắm được định lý
-Theo dõi bảng phụ 3
-Lắng nghe mô tả của giáo viên và hình dung các quy tắc
HĐ1: ĐẶT và NÊU VẤN ĐỀ
-Nêu các ví dụ và nêu câu hỏi theo ý đồ
-Tổ chức cho các nhóm trả lời câu hỏi
-Rút ra kết luận theo đúng ý đồ xây dựng định nghĩa sau khi các nhóm đã hoàn thành Ví dụ 1 và Ví dụ 2
-Trình bày BẢNG PHU 1 để các lớp xem
-Tổ chức cho các nhom làm ví dụ 3
-Trình bày BẢNG PHỤ 2 cho học sinh theo dõi
-Mô tả nhân xét trên bảng đen
HĐ2: THỰC HÀNH CÁC QT
-Trình bày BẢNG PHỤ 3 cho cả lớp nhìn
-Mô tả lại bằng lời và trên bảng đen nhằm giúp HS hình dung quy tăc về dấu của tích hai số nguyên
I. DÃY SỐ CÓ GIỚI HẠN +¥ hoặc -¥:
Ví dụ 1: Xét dãy số un=2n-3, n=1,2,.
- Với M=1000, tìm các số hạng của dãy lớn hơn M?
un>M, 
- Với M=2000, tìm các số hạng của dãy lớn hơn M?
un>M, 
Ví dụ 2: Xét dãy số 
un=-2n+3, n=1,2,
- Với M=-1000, tìm các số hạng của dãy bé hơn M?
un<M, 
-Với M=-2000, tìm các số h ạng c ủa d ãy b é h ơn M?
 un<M, 
BẢNG PHỤ 1
ĐỊNH NGHĨA 1: Ta nói dãy số (un) có giới hạn là +¥ nếu với mỗi số dương tuỳ ý cho trước, mọi số hạng của dãy số, kể từ một số hạng nào đó trở đi, đều lớn hơn số dương đó.
Khi đó ta viết:
lim(un)=+¥; limun=+¥ hoặc 
ĐỊNH NGHĨA 2: Ta nói rằng dãy số (un) có giới hạn là -¥ nếu với mọi số âm tuỳ ý cho trước, mọi số hạng của dãy số, kể từ một số hạng nào đó trở đi, đều nhỏ hơn số âm đó.
Khi đó ta viết:
lim(un)=-¥; limun=¥ hoặc 
CHÚ Ý: Ta gọi các dãy số có giới hạn như trên là dãy số có giới hạn vô cực hay dân đến vô cực
Ví dụ 3: Áp dụng định nghĩa tìm các giới hạn sau:
a. limn b. lim
c. lim(-) d. lim(-2n)
BẢNG PHỤ 2:
NHẬN XÉT: Một phân số có tử số là hằng số thì nó sẽ dẫn tới 0 nếu mẫu số càng lớn hoặc càng bé. Từ đó ta đi đến định lý sau đây:
ĐỊNH LÝ: 
Nếu lim=+¥ th ì lim=0.
II. MỘT VÀI QUY TẮC TÌM GIỚI HẠN VÔ CỰC:
BẢNG PHỤ 3:
QUY TẮC 1: Nếu limun=±¥ v à limvn=¥ th ì lim(unvn) được cho bởi bảng sau:
limun
limvn
lim(unvn)
+¥
+¥
-¥
-¥
+¥
-¥
+¥
-¥
+¥
-¥
-¥
+¥
QUY TẮC 2: Nếu limun=±¥ và limvn=L¹0 thì lim(unvn) được cho bởi bảng sau:
limun
dấu của L
lim(unvn)
+¥
+¥
-¥
-¥
+
-
+
-
+¥
-¥
-¥
+¥
QUY TẮC 3: Nếu limun=L¹0, limvn=0 và vn>0 hoặc vn<0 kể từ một số hạng nào đó trở đi thì được cho bởi bảng sau:
dấu của L
dấu của vn
+
+
-
-
+
-
+
-
+¥
-¥
-¥
+¥
Lần lượt áp dụng các quy tắc trên làm các ví dụ sau đây:
Ví dụ 4: Tính limn2
Ví dụ 5: Tính
lim(3n2-101n-51)
Ví dụ 6: Tính 
HĐ HS
HĐ GV
GHI BẢNG và BẢNG PHỤ
-Nắm được vấn đề đặt ra và thao luận tìm câu trả lời
-Cử đại diện tra lời và nhận xét câu trả lời của các nhóm khác.
-Lắng nghe kết luận của GV và hình dung định nghĩa
-Theo dõi bảng phụ
-Các nhóm tích cực trao đổi đề giải ví dụ 3 và cử đại diện trả lời
-Theo dõi bảng phu 2
-Theo dõi sự mô tả của GV để nắm được định lý
-Theo dõi bảng phụ 3
-Lắng nghe mô tả của giáo viên và hình dung các quy tắc
-Các nhóm tích cực trao đổi để tìm ra đáp số
-Cử đại diện trình bày và theo doi nhận xét kết quả của các nhóm khác
HĐ1: ĐẶT và NÊU VẤN ĐỀ
-Nêu các ví dụ và nêu câu hỏi theo ý đồ
-Tổ chức cho các nhóm trả lời câu hỏi
-Rút ra kết luận theo đúng ý đồ xây dựng định nghĩa sau khi các nhóm đã hoàn thành Ví dụ 1 và Ví dụ 2
-Trình bày BẢNG PHU 1 để các lớp xem
-Tổ chức cho các nhom làm ví dụ 3
-Trình bày BẢNG PHỤ 2 cho học sinh theo dõi
-Mô tả nhân xét trên bảng đen
HĐ2: THỰC HÀNH CÁC QT
-Trình bày BẢNG PHỤ 3 cho cả lớp nhìn
-Mô tả lại bằng lời và trên bảng đen nhằm giúp HS hình dung quy tăc về dấu của tích hai số nguyên
-Tổ chức cho học sinh làm lần lượt các ví dụ 4,5,6.
I. DÃY SỐ CÓ GIỚI HẠN +¥ hoặc -¥:
Ví dụ 1: Xét dãy số un=2n-3, n=1,2,.
- Với M=1000, tìm các số hạng của dãy lớn hơn M?
un>M, 
- Với M=2000, tìm các số hạng của dãy lớn hơn M?
un>M, 
Ví dụ 2: Xét dãy số 
un=-2n+3, n=1,2,
- Với M=-1000, tìm các số hạng của dãy bé hơn M?
un<M, 
-Với M=-2000, tìm các số h ạng c ủa d ãy b é h ơn M?
 un<M, 
BẢNG PHỤ 1
ĐỊNH NGHĨA 1: Ta nói dãy số (un) có giới hạn là +¥ nếu với mỗi số dương tuỳ ý cho trước, mọi số hạng của dãy số, kể từ một số hạng nào đó trở đi, đều lớn hơn số dương đó.
Khi đó ta viết:
lim(un)=+¥; limun=+¥ hoặc 
ĐỊNH NGHĨA 2: Ta nói rằng dãy số (un) có giới hạn là -¥ nếu với mọi số âm tuỳ ý cho trước, mọi số hạng của dãy số, kể từ một số hạng nào đó trở đi, đều nhỏ hơn số âm đó.
Khi đó ta viết:
lim(un)=-¥; limun=¥ hoặc 
CHÚ Ý: Ta gọi các dãy số có giới hạn như trên là dãy số có giới hạn vô cực hay dân đến vô cực
Ví dụ 3: Áp dụng định nghĩa tìm các giới hạn sau:
a. limn b. lim
c. lim(-) d. lim(-2n)
BẢNG PHỤ 2:
NHẬN XÉT: Một phân số có tử số là hằng số thì nó sẽ dẫn tới 0 nếu mẫu số càng lớn hoặc càng bé. Từ đó ta đi đến định lý sau đây:
ĐỊNH LÝ: 
Nếu lim=+¥ th ì lim=0.
II. MỘT VÀI QUY TẮC TÌM GIỚI HẠN VÔ CỰC:
BẢNG PHỤ 3:
QUY TẮC 1: Nếu limun=±¥ v à limvn=¥ th ì lim(unvn) được cho bởi bảng sau:
limun
limvn
lim(unvn)
+¥
+¥
-¥
-¥
+¥
-¥
+¥
-¥
+¥
-¥
-¥
+¥
QUY TẮC 2: Nếu limun=±¥ và limvn=L¹0 thì lim(unvn) được cho bởi bảng sau:
limun
dấu của L
lim(unvn)
+¥
+¥
-¥
-¥
+
-
+
-
+¥
-¥
-¥
+¥
QUY TẮC 3: Nếu limun=L¹0, limvn=0 và vn>0 hoặc vn<0 kể từ một số hạng nào đó trở đi thì được cho bởi bảng sau:
dấu của L
dấu của vn
+
+
-
-
+
-
+
-
+¥
-¥
-¥
+¥
Lần lượt áp dụng các quy tắc trên làm các ví dụ sau đây:
Ví dụ 4: Tính limn2
Ví dụ 5: Tính
lim(3n2-101n-51)
Ví dụ 6: Tính 
Hoạt động 1: Hệ thống lại lý thuyết về giới hạn dãy số:
Hoạt động của GV
Hoạt động của HS
Ghi Bảng
Cho HS nhắc lại những kiến thức cơ bản đã học về giới hạn dãy số.
Nêu lại các tính chất về dãy số có giới hạn 0? Một vài giới hạn đặc biệt?
Nêu lại định lý về dãy số có giới hạn hữu hạn. 
Công thức tính tổng CSN lùi vô hạn.
Nêu lại các qui tắc về giới hạn vô cực.
GV trình chiếu bằng đèn chiếu bảng tóm tắt lý thuyết.
Nhớ lại kiến thức đã học, hệ thống lại và trả lời câu hỏi của GV.
* Nêu lại ĐL 1 & 2 về giới hạn hữu hạn.
* 
* Các QT 1, 2, 3.
Dãy số có giới hạn 0:
Dãy số có giới hạn L:
Dãy số có giới hạn vô cực:
(Tóm tắt lý thuyết ở bảng phụ)
Hoạt động 2: Giải bài tập về tìm giới hạn dãy số dạng :
Hoạt động của GV
Hoạt động của HS
Ghi Bảng
Bài 1: Câu a dùng pp nào?
Vận dụng lý thuyết nào để tìm được giới hạn?
Ta ra được kq như thế nào?
Tương tự nêu pp giải câu b?
Cho học sinh thảo luận nhóm, nhận xét giới hạn của tử, mẫu và rút ra kết luận.
Nhận xét sự khác nhau giữa câu a và b? ( chú ý vào bậc của tử, mẫu ở từng dãy số).
So sánh kq 2 câu và rút ra nhận xét.
Tiếp tục cho HS thảo luận và nêu pp giải câu c.
Nhận xét bậc của tử và mẫu của câu c?
Chú ý: n2 khi đưa vào dấu căn bậc 2 thì thành n mũ mấy?
Nh

File đính kèm:

  • docGIỚI HẠN DÃY.doc
Giáo án liên quan