Giáo án Đại số 11 (cơ bản) tiết 1 - 3: Hàm số lượng giác

Tuần 1, tiết 1

Chương I

HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC

Bài 1 : HÀM SỐ LƯỢNG GIÁC

I. Mục tiêu:

Qua tiết học này HS cần:

1. Về kiến thức:

- Hiểu khái niệm hàm số lượng giác (của biến số thức) sin, côsin và tính tuần hoàng của các hàm số lượng giác.

2. Về kỹ năng:

-Xác định được tập xác định, tập giá trị, tính chất chẵn, lẻ; tính tuần hoàn; chu kỳ; sự biến thiên của hàm số y = sinx và y = cosx.

-Vẽ được đồ thị của hàm số và tự đó suy ra đồ thị của hàm số y = cosx dựa vào tịnh tiến đồ thị y =sinx

 

doc13 trang | Chia sẻ: tuananh27 | Lượt xem: 1313 | Lượt tải: 1download
Bạn đang xem nội dung tài liệu Giáo án Đại số 11 (cơ bản) tiết 1 - 3: Hàm số lượng giác, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
1(10’): Ví dụ về tính tuần hoàn của hàm số y = sinx và y = cosx
GV chiếu slide ví dụ
GV yêu cầu HS thảo luận theo nhóm và cử đại diện báo cáo.
GV bổ sung (nếu cần).
GV người ta đã chứng minh được rằng T =2 là số dương nhỏ nhất thỏa mãn đẳng thức sin(x +T)= sinx và cos(x+T)=cosx.
*Hàm số y = sinx và y =cosx thỏa mãn đẳng thức trên được gọi là hàm số tuần hoàn với chu kỳ 2.
HĐTP2: (5’) (Sự biến thiên và đồ thì hàm số lượng giác y= sinx và y = cosx)
-Hãy cho biết tập xác định, tập giá trị, tính chẵn lẻ và chu kỳ của hàm số y =sinx?
GV cho HS thảo luận theo nhóm và cử đại diện đứng tại chỗ báo cáo.
GV ghi kết quả của các nhóm và gọi HS nhóm khác nhận xét bổ sung.
GV ghi kết quả chính xác lên bảng.
HĐTP3(10’): (Sự biến thiên của hàm số y = sinx trên đoạn )
GV chiếu slide về hình vẽ đường tròn lượng giác về sự biến thiên.
GV cho HS thảo luận theo nhóm để tìm lời giải và báo cáo.
GV ghi kết quả của các nhóm và gọi HS nhóm khác nhận xét, bổ sung.
GV chiếu slide kết quả.
Vậy từ sự biến thiên của hàm số y = sinx ta có bảng biến thiên (GV chiếu bảng biến thiên của hàm số y = sinx)
GV yêu cầu HS vẽ đồ thị hàm số y = sinx trên đoạn
 và bảng biến thiên.
 Lấy đối xứng đồ thị qua gốc tọa độ (Vì y = sinx là hàm số lẻ )
Vậy để vẽ đồ thị của hàm số y=sinx ta làm như thế nào? Hãy nêu cách vẽ và vẽ đồ thị y = sinx trên tập xác định của nó.
GV gọi HS nêu cách vẽ và hình vẽ (trên bảng phụ).
Cho HS nhóm khác nhận xét, bổ sung.
GV nêu cách vẽ và hìnhvẽ chính xác bằng cách chiếu slide.
 Tương tự hãy làm tương tự với hàm số y = cosx (GV yêu cầu HS tự rút ra và xem như bài tập ở nhà)
GV chỉ chiếu slide kết quả.
HS thảo luận và cử đại diện báo cáo.
HS nhóm khác nhận xét bổ sung và ghi chép sửa chữa.
HS chú ý theo dõi và ghi nhớ
HS thảo luận theo nhóm vào báo cáo.
Nhận xét bổ sung và ghi chép sửa chữa.
HS dựa vào hình vẽ trao đổi và cho kết quả:
-Xác định với mọi và 
Tập xác định ; tập giá trị 
 nên là hàm số lẻ.
Chu kỳ .
-HS chú ý theo dõi hình vẽ và thảo luận và báo cáo.
-HS nhóm khác nhận xét và bổ sung, ghi chép sửa chữa.
-HS trao đổi cho kết quả:
 x1, x2và x1<x2 thì sinx1<sinx2
x3<x4và x3<x4 thì 
sinx3>sinx4
Vậy 
HS vẽ đồ thị hàm số y = sinx trên đoạn (dựa vào hình 3 SGK) 
Bảng hiến thiên như ở trang 8 SGK.
Đối xứng qua gốc tọa độ ta được hình 4 SGK.
Để vẽ đồ thị hàm số y = sinx trên toàn trục số ta tịnh tiến liên tiếp đồ thị hàm số trên đoạn theo vác vectơ .
HS chú ý theo dõi trên bảng và ghi chép.
HS theo dõi và suy nghĩ trả lời tương tự hàm số y = sinx
Slide:
Nội dung: Tìm những số T sao cho f(x +T) = f(x) với mọi x thuộc tập xác định của các hàm số sau:
a)f(x) =sinx; b)f(x) = cosx.
*T =2 là số dương nhỏ nhất thỏa mãn đẳng thức sin(x +T)= sinx và cos(x+T)=cosx.
*Hàm số y = sinx và y = cosx tuần hoàn với chu kỳ 2.
*Hàm số y = sinx:
+Tập xác định: ;
+Tập giá trị ;
+Là hàm số lẻ;
+Chu kỳ 2.
*Hàm số y = cosx:
+Tập xác định: ;
+Tập giá trị ;
+Là hàm số chẵn;
+Chu kỳ 2.
4. Củng cố và hướng dẫn học ở nhà:
- Xem lại và học lý thuyết theo SGK
- Soạn trước đối với hàm số tang và côtang.
IV. Rút kinh nghiệm
Ngày soạn : 14/08/2011
Tuần 1, tiết 2
HÀM SỐ LƯỢNG GIÁC
Mục tiêu:
Qua tiết học này HS cần:
Về kiến thức:
Hiểu khái niệm hàm số lượng giác (của biến số thức) tang, côtang và tính tuần hoàng của các hàm số lượng giác.
2. Về kỹ năng:
-Xác định được tập xác định, tập giá trị, tính chất chẵn, lẻ; tính tuần hoàn; chu kỳ; sự biến thiên của hàm số y = tanx và y = cotx.
-Vẽ được đồ thị của hàm số y = tanx và y = cotx.
3. Về tư duy và thái độ:
Tích cực hoạt động, trả lời câu hỏi. Biết quan sát và phán đoán chính xác.
Chuẩn bị của GV và HS:
GV: Các slide, computer, projecter, giáo án,
HS: Soạn bài trước khi đến lớp, chuẩn bị bảng phụ, 
 Phương pháp:
 Gợi mở, vấn đáp, đan xen hoạt động nhóm.
Tiến trình bài học:
Hoạt động của GV
Hoạt động của HS
Nội dung
HĐ1: Hình thành khái niệm hàm số tang và côtang.
HĐTP1(10’): (Khái niệm hàm số tang và côtang)
-Hãy viết công thức tang và côtang theo sin và côsin mà em đã biết?
Từ công thức tang và côtang phụ thuộc theo sin và côsin ta có định nghĩa về hàm số tang và côtang (GV chiếu Slide 1 về khái niệm hàm số y = tanx và y = cotx)
HĐTP2(5’): (Bài tập để tìm chu kỳ của hàm số tang và côtang)
GV nêu đề bài tập 1 và yêu cầu HS thảo luận theo nhóm và báo cáo.
GV ghi lời giải của từng nhóm và gọi HS nhận xét bổ sung.
GV yêu cầu HS đọc ở bài đọc thêm.
HS thảo luận và nêu công thức
HS nhận xét bổ sung và ghi chép sửa chữa.
HS trao đổi và cho kết quả:
HS chú ý theo dõi và ghi chép
HS thảo luận theo nhóm và báo cáo.
HS nhận xét và bổ sung sửa chữa, ghi chép.
Slide 1: 
Nội dung: 
Hàm số tang:
Hàm số tang là hàm số được xác định bởi công thức:
Vì cosx ≠0 khi và chỉ khi nên tập xác định của hàm số y = tanx là:
Hàm sô côtang:
Hàm số côtang là hàm số được xác định bởi công thức:
Vì sinx ≠0 khi và chỉ khi nên tập xác định của hàm số y = cotx là:
Bài tập 1: Tìm những số T sao cho f(x+T)=f(x)với x thuộctập xác định của các hàm số sau:
a)f(x) =tanx; b)y = cotx.
HĐ2: Tính tuần hoàn của hàm số tang và côtang.
HĐTP(2’): 
Người ta chứng minh được rằng T = là số dương nhỏ nhất thỏa mãn đẳng thức:
 tan(x+T) = tanx 
và cot(x +T) = cotx với mọi x là số thực (xem bài đọc thêm)
nên ta nói, hàm số y = tanx và y = cotx tuần hoàn với chu kỳ . 
HS chú ý theo dõi trên bảng và ghi chép
*Tính tuần hoàn của hàm số lượng giác tang và côtang.
Hàm số y=tanx và y = cotx tuần hoàn với chu kỳ .
HĐ3: (Sự biến thiên và đồ thị của hàm số lượng giác y=tanx )
HĐTP1(5’): (Hàm số y =tanx)
Từ khái niệm và từ các công thức của tanx hãy cho biết:
-Tập xác định; tập giá trị;
-Tính chẵn, lẻ;
-Chu kỳ;
GV cho HS thảo luận theo nhóm và báo cáo.
GV gọi HS nhận xét và bổ sung (nếu cần)
-Do hàm số y = tanx tuần hoàn với chu kỳ nên đồ thị của hàm số y = tanx trên tập xác định của nó thu được từ đồ thị hàm số trên khoảng bằng cách tịnh tiến song song với trục hoành từ đoạn có độ dài bằng .
Để làm rõ vấn đề này ta qua HĐTP5.
HĐTP2(5’): ( Sự biến thiên của hàm số y = tanx trên nửa khoảng )
GV chiếu hình vẽ (hoặc bảng phụ) về trục tang trên đường tròn lượng giác.
Dựa vào hình 7 SGK hãy chỉ ra sự biến thiên của hàm số y = tanx trên nửa khoảng từ đó suy ra đồ thị và bảng biến thiên của hàm số y = tanx trên nửa khoảng đó.
GV gọi HS nhận xét và bổ sung (nếu cần) . 
Vì hàm số y = tanx là hàm số lẻ, nên đồ thị của nó đối xứng nhau qua gốc O(0;0). Hãy lấy đối xứng đồ thị hàm số y = tanx trên nửa khoảng qua gốc O(0;0).
GV xem xét các nhóm vẽ đồ thị và nhận xét bổ sung từng nhóm.
GV hướng dẫn và vẽ hình như hình 8 SGK.
HĐTP 3: ( ) (Đồ thị của hàm số y = tanx trên tập xác định D)
Từ đồ thị của hàm số y = tanx trên khoảng hãy nêu cách vẽ đồ thị của nó trên tập xác định D của nó.
GV gọi HS nhận xét và bổ sung (nếu cần).
Vậy, do hàm số y = tanx tuần hoàn với chu kỳ nên để vẽ đồ thị hàm số y = tanx trên D ta tịnh tiến đồ thị hàm số trên khoảng song song với trục hoành từng đoạn có độ dài , ta được đồ thị hàm số y = tanx trên D. 
GV phân tích và vẽ hình (như hình 9 SGK) 
HĐTP4( ): (Hướng dẫn tương tự đối với hàm số y =cotx ).
Hãy làm tương tự hãy xét sự biến thiên và vẽ đồ thị hàm số y = cotx (GV yêu cầu HS tự rút ra và xem như bài tập ở nhà) và đây là nội dung tiết sau ta học.
HS thảo luận theo nhóm và cử đại diện báo cáo.
HS nhận xét và ghi chép bổ sung.
HS trao đổi cho kết quả:
-Tập xác định:
-Tập giá trị (-∞;+∞).
-Do tan(-x) =- tanx nên là hàm số lẻ.
-Chu kỳ .
HS chú ý theo dõi trên bảng và ghi chép (nếu cần).
HS thảo luận theo nhóm và báo cáo.
HS trao đổi và cho kết quả:
nên hàm số y= tanx đồng biến trên nửa khoảng 
Đồ thị như hình 7 SGK.
Bảng biến thiên (ở SGK trang 11)
HS chú ý và theo dõi 
HS thảo luận theo nhóm.
HS chú ý theo dõi 
HS thảo luận theo nhóm để vẽ đồ thị và báo cáo.
HS nhận xét, bổ sung và ghi chép sửa chữa.
HS chú ý và theo dõi trên bảng.
HS chú ý theo dõi trên bảng và ghi chép (nếu cần)
HS theo dõi và suy nghĩ trả lời tương tự hàm số y = tanx
Với sđ, sđ
Trên nửa khoảng với 
X1 < x2 thì nên hàm số đồng biến.
Bảng biến thiên:
x
0 
y=tanx
 +∞
 1
0
4. Củng cố và hướng dẫn học ở nhà:
- Xem và học lý thuyết theo SGK
- Làm bài tập 1; 2 a) b) c); 3;4 và 5 SGK trang 17,18.
IV. Rút kinh nghiệm
----------------------------------------------------
Ngày soạn : 14/08/2011
Tuần 1, tiết 3
HÀM SỐ LƯỢNG GIÁC
I.Mục tiêu:
 Qua tiết học này HS cần:
Về kiến thức:
Hiểu khái niệm hàm số lượng giác (của biến số thức) côtang và tính tuần hoàn. Của các hàm số lượng giác.
2. Về kỹ năng:
-Xác định được tập xác định, tập giá trị, tính chất chẵn, lẻ; tính tuần hoàn; chu kỳ; sự biến thiên của hàm số y = cotx.
-Vẽ được đồ thị của hàm số y = cotx.
3. Về tư duy và thái độ:
Tích cực hoạt động, trả lời câu hỏi. Biết quan sát và phán đoán chính xác.
II.Chuẩn bị của GV và HS:
GV: Các slide, computer, projecter, giáo án,
HS: Soạn bài trước khi đến lớp, chuẩn bị bảng phụ, 
III. Phương pháp:
 Gợi mở, vấn đáp, đan xen hoạt động nhóm.
IV.Tiến trình bài học:
Hoạt động của GV
Hoạt động của HS
Nội dung
HĐ1: (Sự biến thiên và đồ thị của hàm số lượng giác y=cotx)
HĐTP1( ): (Hàm số y =cotx)
Từ khái niệm và từ các công thức của cotx hãy cho biết:
-Tập xác định; tập giá trị;
-Tính chẵn, lẻ;
-Chu kỳ;
GV cho HS thảo luận theo nhóm và báo cáo.
GV gọi HS nhận xét và bổ sung (nếu cần)
-Do hàm số y = cotx tuần hoàn với chu kỳ nên đồ thị của hàm số y = cotx trên tập xác định của nó thu được từ đồ thị hàm số trên khoảng bằng cách tịnh tiến song song với trục hoành từ đoạn có độ dài bằng .
Để làm rõ vấn đề này ta qua HĐTP2.
HĐTP2( ): (Sự biến thiên của hàm số y = tanx trên khoảng )
GV chiếu hình vẽ (hoặc bảng phụ) về trục côtang trên đường tròn lượng giác.
Dựa vào hình vẽ hãy chỉ ra sự biến thiên của hàm số y = cotx trên khoảng từ đó suy ra đồ thị và bảng biến thiên của hàm số y = cotx trên khoảng đó.
GV gọi HS nhận xét và bổ sung (nếu cần) . 
Vì hàm số y = cotx là hàm số lẻ, nên đồ thị của nó đối 

File đính kèm:

  • docGA DS 11 Tuan 1.doc