Giáo án bám sát Toán 10

Chủ đề 6: Vectơ và các phép toán

I.Mục tiêu:

Kiến thức: Nắm vững định nghĩa về vectơ, các qui tắc cộng hai vectơ, trừ hai vectơ, qui tắchình bình hành.

Kỹ năng:

-Xác định các vectơ cùng phương, cùng hướng bằng nhau

-Chứng minh hai vectơ bằng nhau

-Áp dụng các qui tắc cộng hai vectơ, trừ hai vectơ, qui tắchình bình hành để giải các bài toán liên quan

II. Chuẩn bị:

-Giáo viên chuẩn các bài tập

III. Tiến trình dạy học:

 

doc32 trang | Chia sẻ: tuananh27 | Lượt xem: 747 | Lượt tải: 0download
Bạn đang xem trước 20 trang mẫu tài liệu Giáo án bám sát Toán 10, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
ằng đồ thị của nó:
a) Có trục đối xứng là đường thẳng x = 1 và cắt trục tung tại điểm (0; 4).
b) Có đỉnh là I(-1; -2)
c) Đi qua điểm A(0; -1) và B(4; 0)
d) Có hoành độ đỉnh là 2 và đi qua điểm M(1; -2).
1. Hs khảo sát sự biến thiên và vẽ đồ thị của các hàm số đã cho.
2.a) Do (P) có trục đối xứng x = 1 nên ta có:
x = 
hay b = -2 (1)
và do (P) cắt trục tung tại điểm (0; 4) nên ta có:
c = 4 (2)
Từ (1) và (2) suy ra: (P): y = 2x2 - 2x + 4.
b) Do (P) có đỉnh là I (-1; -2) nên ta có hệ phương trình:
Vậy: (P): y = 2x2 + 2x - 2.
c) Do (P) đi qua điểm A(0; -1) và B(4; 0) nên ta có:
Vậy: (P): y = 2x2 x - 1.
d) Do (P) có hoành độ đỉnh x = 2 nên ta có:
Mặt khác, do (P) đi qua M (1; -2) nên ta có:
2.12 + b.1 + c = - 2 (4)
Từ (3) và (4) suy ra:
Vậy: (P): y = 2x2 - 4x.
Củng cố: Củng cố lại phương pháp giải thông qua các bài tập
Dặn dò: Về nhà làm bài tập trong SBT 
Tuần 20
I.Mục tiêu:
Kiến thức: Giúp học sinh nắm được:
	–Ôn lại việc giải các bất phương trình, hệ bất phương trình đơn giản.
Kỹ năng: Giúp học sinh rèn luyện các kỹ năng:
	-Giải bất phương trình, hệ bất phương trình.
II. Chuẩn bị:
-Giáo viên chuẩn các bài tập
III. Tiến trình dạy học:
Hoạt động 1: Thực hiện các bài tập sau:
Hoạt động của thầy
Hoạt động của trò
Giải bất phương trình: 
1. ï2x - 1ï£ x + 2 (1)
2. ïx - 1ï³ x - 2. (2)
3. (3)
4. (4)
5. (5)
6. (6)
Hãy giải các hệ bất phương trình sau:
7. 
8. 
1. 
Vậy: S = [; 3]
2. 
 Vậy tập nghiệm của BPT là: 
3.Vậy: S = [0; 3)
4. Vậy: S = (-¥; -5)
5. 
Vậy: S = (-1; 4) È (4; +¥)
6.Vậy: S = (3; +¥)
7. (7a) Û - 30x + 9 > 15(2x - 7) Û 60x < 15.7 + 9 Û x < 
(7b) Û 2x - 1 Vậy: S = (;)
8.(8a) Û Û 22x - 6 £ - 5x + 7
 Û 27x £ 13 Û x £ 
(8b) Û Û 42 - 6x > 15x + 20 Û 21x < 22
 Û x < Vậy: S = (-¥;]
Củng cố: Củng cố lại phương pháp giải thông qua các bài tập
Dặn dò: Về nhà làm bài tập trong SBT 
Tuần 21
I.Mục tiêu:
Kiến thức: Giúp học sinh nắm được:
	–Ôn lại việc tìm tích vô hướng của hai vectơ
Kỹ năng: Giúp học sinh rèn luyện các kỹ năng:
	-Tính góc giữa hai vectơ, tích vô hướng của hai vectơ
 II. Chuẩn bị:
-Giáo viên chuẩn các bài tập
III. Tiến trình dạy học:
Hoạt động 1: Thực hiện các bài tập sau:
Hoạt động của thầy
Hoạt động của trò
1. Cho tam giác ABC có góc C = 900 và có các cạnh AC = 9 cm, CB = 5 cm.
a) Hãy tính 
b) Hãy tính cạnh AB và góc A của tam giác.
2. Tam giác ABC có AB = 5 cm, BC = 7 cm, CA = 8 cm.
a) Hãy tính 
b) Hãy tính , rồi tính giá trị của góc C.
3. Cho tam giác ABC. Biết A = 600, b = 8 cm, c = 5 cm.
a) Hãy tính cạnh a, diện tích S, chiều cao ha của tam giác.
b) Hãy tính bán kính R, r của các đường tròn ngoại tiếp và nội tiếp tam giác ABC.
1. a) Theo định nghĩa tích vô hướng ta có:
b) Ta có: AB2 = AC2 + BC2 = 92 + 52 = 106. Do đó: AB = cm.
Mặt khác, ta có: tanA =
2. a) Ta có: BC2 = = AC2 + AB2 - 2.
Þ = Þ = 
Theo định nghĩa tích vô hướng: 
. Do đó: cosA = 
Vậy: A = 600.
b) Ta có:
= Þ= 
Do đó: cosC = . Vậy: C » 38013'.
3. a) Theo định lý côsin ta có:
a2 = b2 + c2 - 2.b.c.cosA = 64 + 25 - 2.8.5.cos600 = 49. Vậy: a = 7
Ta có: S = b.c.sinA = 8.5. = 10. (cm2)
Mặt khác,Ta có: S = a.ha Þ ha =(cm)
b) Ta có: S = (cm)
và S = p.r Þ r = , với p = (7 + 8 + 5) = 10Þ r = (cm)
Củng cố: Củng cố lại phương pháp giải thông qua các bài tập
Dặn dò: Về nhà làm bài tập trong SBT 
Tuần 22
I.Mục tiêu:
Kiến thức: Giúp học sinh nắm được:
	–Ôn lại việc tìm các yếu tố trong tam giác.
Kỹ năng: Giúp học sinh rèn luyện các kỹ năng:
	-Giải tam giác.
 II. Chuẩn bị:
-Giáo viên chuẩn các bài tập
III. Tiến trình dạy học:
Hoạt động 1: Thực hiện các bài tập sau:
Hoạt động của thầy
Hoạt động của trò
1. Cho tam giác ABC, biết a = 21 cm, b = 17 cm, 
c = 10 cm.
a) Hãy tính diện tích S của tam giác.
b) Hãy tính chiều cao ha và độ dài đường trung tuyến ma.
2. Cho tam giác ABC, biết A = 600, B = 450, 
b = 8 cm.
a) Hãy tính các cạnh và các góc còn lại của tam giác.
b) Hãy tính diện tích S của tam giác ABC
3. Cho hai lực có cường độ lần lượt là 3 N và 4 N cùng tác động vào một điểm và tạo với nhau một góc 400. Hãy tính cường độ của hợp lực.
1. a) Theo công thức Hê-rông ta có:
S = 
Với: p = (a + b + c) Þ p = (21 + 17 + 10) = 24
Do đó: S = . Vậy: S = 84 cm2.
b) Ta có: ha = (cm)
. 
Do đó: ma = (cm)
2. a) Theo định lý sin ta có: 
C = 1800 - (600 + 450) = 750
Do đó: a = . c =
b) Gọi S là diện tích tam giác ABC, ta có:
S = b.c.sinA = 8.10,9.sin600 » 37,8.
3. 
Gọi hai lực đã cho là . Đặt 
Với ABDC là hình bình hành, ta có: = 450.
Xét tam giác ABD có: AD2 = AB2 + BD2 - 2.AB.BD.cos
= 32 + 42 - 2.3.4.cos1400 (= 1800 - 400 = 1400)
= 43,39 Þ AD = » 6,6 N
Vậy: cường độ của hợp lực là: = 6,6 N
Củng cố: Củng cố lại phương pháp giải thông qua các bài tập
Dặn dò: Về nhà làm bài tập trong SBT
Tuần 23
I.Mục tiêu:
Kiến thức: Giúp học sinh nắm được:
	–Ôn lại việc tìm các yếu tố trong tam giác.
Kỹ năng: Giúp học sinh rèn luyện các kỹ năng:
	-Giải tam giác.
 II. Chuẩn bị:
-Giáo viên chuẩn các bài tập
III. Tiến trình dạy học:
Hoạt động 1: Thực hiện các bài tập sau:
Hoạt động của thầy
Hoạt động của trò
1. Giải tam giác ABC. Biết: b=14, c =10, 
A = 1450.
2. Giải tam giác ABC. Biết: a = 4, b = 5, c = 7.
3. Cho tam giác ABC có a = 2, b = 2, C = 300.
a) Hãy tính cạnh c, góc A, và diện tích S của tam giác ABC.
b) Tính chiều cao ha và đường trung tuyến ma của tam giác ABC.
4. Cho tam giác ABC, biết: c = 35 cm, A = 400, C = 1200. Hãy tính a, b, B.
5. Cho tam giác ABC, biết: a = 7 cm, b = 23 cm, 
C = 1300. Hãy tính c, A, B.
7. Ta có: a2 = b2 + c2 - 2.b.c.cosA = 142 + 102 - 2.14.10.cos1450
 = 196 + 100 - 280(- 0,8191) » 525,35Þ a » 23
» 0,34913 Þ B » 20026'
C = 1800 - (1450 + 20026') » 14034'
8. cosA = Þ A » 3403'
cosB = Þ A » 44025'
C = 1800 - (3403' + 44025') » 101032'
9. a) Theo định lý côsin ta có:
c2 = a2 + b2 - 2.a.b.cosC = (2)2 + 22 - 2. 2.2.cos300 
 = 12 + 4 - 2.2. = 4 Þ c = 2.
Þ D ABC cân tại A (vì có b = c = 2)
Ta có: C = 300 Þ B = 300.
A = 1800 - (300 + 300) = 1200.
S = a.c.sinB = .2.sin300 = .2. = (đvdt)
b) ha =. Do D ABC cân tại A nên: ha = ma = 1.
10. a) Ta có: B = 1800 - (A + C) = 1800 - (400 + 1200) = 200
Theo định lý sin ta có:
 (cm)
(cm)
11. Theo định lý côsin ta có:
c2 = a2 + b2 - 2.a.b.cosC = 72 + 232 -2.7.23.cos1300 »785 Þ c »28(cm)
Theo định lý sin ta có:
Þ A » 1102'
Þ B = 1800 - (A + C) » 1102' = 1800 - (1102' + 1300) » 38058'
Củng cố: Củng cố lại phương pháp giải thông qua các bài tập
Dặn dò: Về nhà làm bài tập trong SBT
Tuần 24
I.Mục tiêu:
Kiến thức: Giúp học sinh nắm được:
	–Ôn lại việc giải bất phương trình bậc nhất bằng xét dấu
Kỹ năng: Giúp học sinh rèn luyện các kỹ năng:
	-Giải bất phương trình bậc nhất.
 II. Chuẩn bị:
-Giáo viên chuẩn các bài tập
III. Tiến trình dạy học:
Hoạt động 1: Thực hiện các bài tập sau:
Hoạt động của thầy
Hoạt động của trò
1. (1)
2. (2)
3. (-2x + 3)(x - 2)(x + 4) > 0 (3)
4. (4x -1)(x + 2)(3x - 5)(-2x + 7) < 0 (4)
5. (13)
6. (14)
7. (15)
1. 
Bảng xét dấu:
X
-¥ - 1 
 2
 +¥ 
1 + x
 - 0
 + ï
 + 
2 - x
 + ï
 + 0
 -
VT
 - 0
 + ïï
 -
Vậy: S = (-¥; -1) È (2; +¥)
2.
Bảng xét dấu:
x
-¥
-2
1/2
2 +¥
2x+1
 -
 ï -
 0 +
ï +
x-2
 -
 ï -
 ï -
0 +
x+2
 -
 0 +
 ï +
ï +
VT
 -
ïï +
 0 -
ïï + 
Vậy: S = (-2;-1/2] È (2; +¥)
3.Cho -2x + 3 = 0 Û x =3/2
 x - 2 = 0 Û x = 2
 x + 4 = 0 Û x= - 4
X
-¥ -4 3/2 2 +¥
-2x+3
 + ½ + 0 - ½ - 
x-2
 - ½ - ½ - 0 +
X+4
 - 0 + ½ + ½ + 
VT
 + 0 - 0 + 0 - 
Vậy: S = (-¥; -4) È (; 2)
4. S = (-¥; -2) È (;) È (;+¥)
 5. S = (-2; -1] È (2; +¥)
6. S = (-¥; -2] È [-;1]
7. S = [-7; -2] È [;+¥)
Củng cố: Củng cố lại phương pháp giải thông qua các bài tập
Dặn dò: Về nhà làm bài tập trong SBT
Tuần 25
I.Mục tiêu:
Kiến thức: Giúp học sinh nắm được:
	–Ôn lại việc giải bất phương trình bậc hai bằng xét dấu.
Kỹ năng: Giúp học sinh rèn luyện các kỹ năng:
	-Giải bất phương trình bậc hai.
 II. Chuẩn bị:
-Giáo viên chuẩn các bài tập
III. Tiến trình dạy học:
Hoạt động 1: Thực hiện các bài tập sau:
Hoạt động của thầy
Hoạt động của trò
1. 6x2 - x - 2 ³ 0 (1) 
2. x2 + 3x < 10 (2)
3. 2x2 + 5x + 2 > 0 (3)
4. 4x2 - 3x -1 < 0 
5. -3x2 + 5x + 1 ³ 0 
6. 3x2 + x + 5 < 0 
7. x2 - 2x + 3 > 0 
8. x2 + 9 > 6x 
9. x2 + 3x + 6 < 0 
10. 
11. 
12. 
13. 
14. 
15. Tìm các giá trị của tham số m để các bpt sau nghiệm đúng với mọi x:
a) 5x2 - x + m > 0 
b) mx2 - 10x - 5 < 0 
c) 
d) m(m + 2)x2 + 2mx + 2 > 0 
16. Tìm m để bpt sau vô nghiệm
a) 5x2 - x + m £ 0
b) mx2 - 10x - 5 ³ 0
17. Tìm m để phương trình sau có hai nghiệm dương phân biệt:
a) (m2 + m + 1)x2 + (2m - 3)x + m-5 = 0
c) x2 - 6mx + 2 - 2m + 9m2 = 0
1.Xét VT = 6x2 - x - 2 = 0 Û 
Bảng xét dấu:
X
-¥
 +¥
VT
 +
 0 -
 0
+
Vậy: S = (-¥;] È [;+¥)
2.(2) Û x2 + 3x - 10 < 0
Xét VT = x2 + 3x - 10 = 0 Û 
Bảng xét dấu:
X
-¥
-2
 5
 +¥
VT
 +
ïï -
ïï +
Vậy: S = (-2; 5)
3. Xét VT = 2x2 + 5x + 2 = 0 Û 
Bảng xét dấu:
X
-¥
-2
-1/2
 +¥
VT
 +
ïï -
 ïï +
Vậy: S = (- ¥; - 2) È (;+¥)
4. S = (; 1)
5. S = [;]
6. S = Æ.
Củng cố: Củng cố lại phương pháp giải thông qua các bài tập
Dặn dò: Về nhà làm bài tập trong SBT
Tuần 26
I.Mục tiêu:
Kiến thức: Giúp học sinh nắm được:
	–Ôn lại việc viết phương trình tham số của đường thẳng và các bài toán liên quan
Kỹ năng: Giúp học sinh rèn luyện các kỹ năng:
	-Viết phương trình đường thẳng.
 II. Chuẩn bị:
-Giáo viên chuẩn các bài tập
III. Tiến trình dạy học:
Hoạt động 1: Thực hiện các bài tập sau:
Hoạt động của thầy
Hoạt động của trò
1. Cho đường thẳng d có phương trình tham số:
a) Hãy chỉ ra một vector chỉ phương và một vector pháp tuyến của d.
b) Hãy tính hệ số góc của d.
c) Cho điểm M trên d có hoành độ xM=7. Hãy tính tung độ của M.
2. Hãy viết phương trình tham số của đường thẳng (d). Biết rằng:
a) (d) đi qua A(2; 3) và có vector chỉ phương 
=(7; 2).
b) (d) đi qua B(4; 5) và có vector pháp tuyến 
=(3; 8).
c) (d) đi qua điểm C(9; 5) và có hệ số góc k = - 2.
3. Cho đường thẳng (d) có phư

File đính kèm:

  • docgiáo án bám sát 10.doc
Giáo án liên quan