Đề thi thử học kì 2 – Môn Toán lớp 11

Câu 4: (3,0 điểm) Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA vuông góc với đáy.

 a) Chứng minh tam giác SBC vuông.

 b) Gọi H là chân đường cao vẽ từ B của tam giác ABC. Chứng minh (SAC) vg (SBH).

 c) Cho AB = a, BC = 2a. Tính khoảng cách từ B đến mặt phẳng (SAC).

 

doc2 trang | Chia sẻ: tuananh27 | Lượt xem: 586 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Đề thi thử học kì 2 – Môn Toán lớp 11, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
TRƯỜNG THPT LÊ HỒNG PHONG
Đề số 1
ĐỀ THI THỬ HỌC KÌ 2 – Năm học 2010 – 2011
Môn TOÁN 	Lớp 11
Thời gian làm bài 90 phút
I. Phần chung: (7,0 điểm)
Câu 1: (2,0 điểm) Tìm các giới hạn sau:
	a) 	b) 	c)	d)
Câu 2: (1,0 điểm) 
a) Tìm a để hàm số sau liên tục tại x = 2:	.
b) Xét tính liên tục của hàm số sau tại điểm x = 3:	 
Câu 3: (1,0 điểm) Tính đạo hàm của các hàm số sau:
	a) 	b) 
Câu 4: (3,0 điểm) Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA vuông góc với đáy.
	a) Chứng minh tam giác SBC vuông.
	b) Gọi H là chân đường cao vẽ từ B của tam giác ABC. Chứng minh (SAC) ^ (SBH).
	c) Cho AB = a, BC = 2a. Tính khoảng cách từ B đến mặt phẳng (SAC).
II. Phần riêng: (3,0 điểm) Thí sinh chỉ được chọn một trong hai phần sau:
	1. Theo chương trình Chuẩn
Câu 5a: (1,0 điểm) Cho hàm số . 
Chứng minh rằng:	
Câu 6a: (2,0 điểm) 
a) Cho hàm số có đồ thị (C).
	 Viết phương trình tiếp tuyến với đồ thị (C) tại điểm có hoành độ bằng 1.
	b) Viết phương trình tiếp tuyến của đồ thị (C) của hàm số tại giao điểm của (C) với trục hoành.
	2. Theo chương trình Nâng cao
Câu 5b: (1,0 điểm) Chứng minh rằng phương trình sau có ít nhất hai nghiệm nằm trong khoảng :
Câu 6b: (2,0 điểm) Cho hàm số có đồ thị (C).
	a) Giải phương trình:	.
	b) Viết phương trình tiếp tuyến với đồ thị (C) tại giao điểm của (C) với trục tung.
Họ và tên thí sinh: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SBD :. . . . . . . . . . 
TRƯỜNG THPT LÊ HỒNG PHONG
Đề số 1
ĐỀ THI THỬ HỌC KÌ 2 – Năm học 2010 – 2011
Môn TOÁN 	Lớp 11
Thời gian làm bài 90 phút
I. Phần chung: (7,0 điểm)
Câu 1: (2,0 điểm) Tìm các giới hạn sau:
	a) 	 b) 	c)	 d)
Câu 2: (1,0 điểm) 
a) Xét tính liên tục của hàm số sau tại điểm :	.
b) Tìm a để hàm số sau liên tục tại x = –1:	
Câu 3: (1,0 điểm) Tính đạo hàm của các hàm số sau:
	a) 	b) 
Câu 4: (3,0 điểm) Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, tâm O. Cạnh SA = a và SA(ABCD). Gọi E, F lần lượt là hình chiếu vuông góc của A lên các cạnh SB và SD. 
	a) Chứng minh BC (SAB), CD (SAD).
	b) Chứng minh (AEF) (SAC).
	c) Tính tan j với j là góc giữa cạnh SC với (ABCD).
II. Phần riêng: (3,0 điểm) Thí sinh chỉ được chọn một trong hai phần sau:
	1. Theo chương trình Chuẩn
Câu 5a: (1,0 điểm) Cho hàm số . 
Chứng minh rằng:	
Câu 6a: (2,0 điểm) ) Cho hàm số có đồ thị (C).
	a) Giải phương trình:	.
	b) Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ bằng 1
	2. Theo chương trình Nâng cao
Câu 5b: (1,0 điểm) Chứng minh rằng phương trình sau có ít nhất hai nghiệm nằm trong khoảng :
Câu 6b: (2,0 điểm) Cho hàm số có đồ thị (C).
	a) Giải phương trình:	.
	b) Viết phương trình tiếp tuyến với đồ thị (C) tại giao điểm của (C) với trục tung.
Họ và tên thí sinh: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SBD :. . . . . . . . . . 

File đính kèm:

  • doc2 DE THI THU HK II 1011.doc